We consider minimum cost spanning tree problems with multiple sources. We propose a cost allocation rule based on a painting procedure. Agents paint the edges on the paths connecting them to the sources. We prove that the painting rule coincides with the folk rule. Finally, we provide an axiomatic characterization.
In this paper we provide an axiomatic characterization of the folk rule for minimum cost spanning tree problems with multiple sources. The properties we need are: cone-wise additivity, cost monotonicity, symmetry, isolated agents, and equal treatment of source costs.
In this paper we show several results regarding to the classical cost sharing problem when each agent requires a set of services but they can share the benefits of one unit of each service, i.e. there is non rival consumption. Specifically, we show a characterized solution for this problem, mainly adapting the well-known axioms that characterize the Shapley value for TU-games into our context. Finally, we present some additional properties that the shown solution satisfy.
This paper considers agglomeration economies. A new firm is planning to open a plant in a country divided into several regions. Each firm receives a positive externality if the new plant is located in its region. In a decentralized mechanism, the plant would be opened in the region where the new firm maximizes its individual benefit. Due to the externalities, it could be the case that the aggregate utility of all firms is maximized in a different region. Thus, the firms in the optimal region could transfer something to the new firm in order to incentivize it to open the plant in that region. We propose two rules that provide two different schemes for transfers between firms already located in the country and the newcomer. The first is based on cooperative game theory. This rule coincides with the $$\tau$$
τ
-value, the nucleolus, and the per capita nucleolus of the associated cooperative game. The second is defined directly. We provide axiomatic characterizations for both rules. We characterize the core of the cooperative game. We prove that both rules belong to the core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.