The last 60 years has seen unprecedented groundwater extraction and overdraft as well as development of new technologies for water treatment that together drive the advance in intentional groundwater replenishment known as managed aquifer recharge (MAR). This paper is the first known attempt to quantify the volume of MAR at global scale, and to illustrate the advancement of all the major types of MAR and relate these to research and regulatory advancements. Faced with changing climate and rising intensity of climate extremes, MAR is an increasingly important water management strategy, alongside demand management, to maintain, enhance and secure stressed groundwater systems and to protect and improve water quality. During this time, scientific research-on hydraulic design of facilities, tracer studies, managing clogging, recovery efficiency and water quality changes in aquifers-has underpinned practical improvements in MAR and has had broader benefits in hydrogeology. Recharge wells have greatly accelerated recharge, particularly in urban areas and for mine water management. In recent years, research into governance, operating practices, reliability, economics, risk assessment and public acceptance of MAR has been undertaken. Since the 1960s, implementation of MAR has accelerated at a rate of 5%/year, but is not keeping pace with increasing groundwater extraction. Currently, MAR has reached an estimated 10 km 3 /year,~2.4% of groundwater extraction in countries reporting MAR (or~1.0% of global groundwater extraction). MAR is likely to exceed 10% of global extraction, based on experience where MAR is more advanced, to sustain quantity, reliability and quality of water supplies. Keywords Managed aquifer recharge. Artificial recharge. Review. Water banking. History of hydrogeology This article is one of a series developed by the International Association of Hydrogeologists (IAH) Commission on Managing Aquifer Recharge
Managed aquifer recharge (MAR) is the umbrella term for a range of technologies that enable the integrated use and management of surface water and groundwater to achieve a wide and growing range of social, economic and environmental benefits. The extent and variety of its applications and benefits have mushroomed in recent years as demonstrated in the suite of papers contained within this Special Issue of Sustainable Water Resources Management. This paper introduces the Special Issue and draws together some insights arising from the findings of these papers. Managed aquifer recharge projects normally evolve through a development cycle that covers planning, investigations, pilot scale trials and then implementation of fullscale projects. This Special Issue starts with four papers that synthesize information from a large number of MAR sites, to demonstrate the scope and geographic distribution of international efforts in MAR, factors affecting the economics of MAR projects, and efforts to find metrics to compare their performance among sites and over time. Then there are four papers describing some significant and widely contrasting completed MAR projects in four continents covering their development, what has been learned and some operational issues. Given this context, the next five papers explore the implementation and evaluation of pilot projects in three countries. These papers address issues ranging from hydrogeological characterization, evaluating impacts on groundwater-dependent ecosystems to community participation. All papers to this point give context to the final five papers that show the planning and preliminary studies performed to select MAR sites, to design pilot projects or to explore the feasibility of large-scale MAR programs. Arranging the sequence of papers in this way is intended to yield an understanding of the need for the investigations and modelling to produce viable projects, and to help readers to consider some important practical questions. What steps are needed for any given project to: define objectives; build partnerships; engage with communities; assemble evidence of technical viability, sustainability and safety; secure funding; design and construct efficiently; streamline operations; and finally to monitor the extent to which a completed project met its goals? These papers were developed out of a broader selection of papers presented at the 9th International Symposium on Managed Aquifer Recharge (ISMAR9), Mexico City, June 2016. They are a companion to another Special Issue arising from ISMAR9, published in the journal Water on the complementary theme "Water Quali ty Consi derat ions for Manag ed Aquif er Recharge Systems" edited by Prof. Dr. Pieter Stuyfzand and Dr. Niels Hartog (2017). These Issues are a contribution of the International Association of Hydrogeologists Commission on Managing Aquifer Recharge (IAH-MAR) to the advancement and dissemination of knowledge for wise application of MAR. Keywords Integrated water management • Aquifer storage and recovery • Seasonal and lo...
The groundwater supply of the city of Chihuahua, Mexico, is currently unsustainable: demand exceeds replenishment in this area of relatively low precipitation and periodic droughts. The Chihuahua basin hydrologic analysis reflects only two areas of opportunity to increase water supply: water reuse and managed aquifer recharge with treated wastewater. This paper presents the results of project studies carried out by the
El método APLIS es una herramienta que permite estimar la tasa media de recarga anual en acuíferos carbonatados, procedente de la infiltración de las precipitaciones en los acuíferos. La tasa es expresada como porcentaje de la precipitación, a partir de las siguientes variables: Altitud (A), Pendiente (P), Litología (L), áreas de absorción-Infiltración preferencial (I) y Suelo (S). Para cada variable se han asignado categorías o intervalos, estableciendo un valor entre 1 (mínima influencia en la recarga) y 10 (máxima influencia) y se han almacenado en un Sistema de Información Geográfica (SIG). Esto permite la superposición en el SIG de las capas de información correspondientes a las variables para calcular la tasa de recarga mediante la ecuación R = (A + P + 3·L + 2·I + S) / 0.9 y obtener la distribución espacial de la misma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.