Background There is a paucity of knowledge on the long-term outcome in patients diagnosed with COVID-19. We describe a cohort of patients with a constellation of symptoms occurring four weeks after diagnosis causing different degrees of reduced functional capacity. Although different hypothesis have been proposed to explain this condition like persistent immune activation or immunological dysfunction, to date, no physiopathological mechanism has been identified. Consequently, there are no therapeutic options besides symptomatic treatment and rehabilitation. Methods We evaluated patients with symptoms that persisted for at least 4 weeks after COVID-19. Epidemiological and clinical data were collected. Blood tests, including inflammatory markers, were conducted, and imaging studies made if deemed necessary. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription polymerase chain reaction (RT-PCR) in plasma, stool, and urine were performed. Patients were offered antiviral treatment (compassionate use). Results We evaluated 29 patients who reported fatigue, muscle pain, dyspnea, inappropriate tachycardia, and low-grade fever. Median number of days from COVID-19 to positive RT-PCR in extra-respiratory samples was 55 (39–67). Previous COVID-19 was mild in 55% of the cases. Thirteen patients (45%) had positive plasma RT-PCR results and 51% were positive in at least one RT-PCR sample (plasma, urine, or stool). Functional status was severely reduced in 48% of the subjects. Eighteen patients (62%) received antiviral treatment. Improvement was seen in most patients (p = 0.000) and patients in the treatment group achieved better outcomes with significant differences (p = 0.01). Conclusions In a cohort of COVID-19 patients with persistent symptoms, 45% of them have detectable plasma SARS-CoV-2 RNA. Our results indicate possible systemic viral persistence in these patients, who may benefit of antiviral treatment strategies.
A simple total reflection x‐ray fluorescence (TXRF) procedure was developed to monitor plasma drug levels and urine elimination in pediatric cancer patients undergoing chemotherapy with platinum‐containing drugs. Serum and urine specimens were irradiated with cut‐off filtered or monochromatized x‐rays using an easy procedure that avoids sample digestion. Specimens from normal patients were standardized by adding known trace amounts of elements absent in these matrices and diluting to 1 : 1 in water. These were used to derive TXRF spectrometer sensitivity curves relative to cobalt as internal element standard and to the incoherently scattered Compton peak as internal standard. Accuracy, precision and detection limits attained in the analysis of minute amounts of unknown serum and urine, treated in the same manner as the standardized samples, are shown to be appropriate for routine monitoring of platinum in cancer patients. Copyright © 2000 John Wiley & Sons, Ltd.
Background SARS-CoV-2 recombinants involving the divergent Delta and Omicron lineages have been described, and one of them, “Kraken” (XBB.1.5), has recently been a matter of concern. Recombination requires the coexistence of two SARS-CoV-2 strains in the same individual. Only a limited number of studies have focused on the identification of co-infections and are restricted to co-infections involving the Delta/Omicron lineages. Methods We performed a systematic identification of SARS-CoV-2 co-infections throughout the pandemic (7609 different patients sequenced), not biassed towards the involvement of highly divergent lineages. Through a comprehensive set of validations based on the distribution of allelic frequencies, phylogenetic consistency, re-sequencing, host genetic analysis and contextual epidemiological analysis, these co-infections were robustly assigned. Results Fourteen (0.18%) co-infections with ≥ 8 heterozygous calls (8–85 HZs) were identified. Co-infections were identified throughout the pandemic and involved an equal proportion of strains from different lineages/sublineages (including pre-Alpha variants, Delta and Omicron) or strains from the same lineage. Co-infected cases were mainly unvaccinated, with mild or asymptomatic clinical presentation, and most were at risk of overexposure associated with the healthcare environment. Strain segregation enabled integration of sequences to clarify nosocomial outbreaks where analysis had been impaired due to co-infection. Conclusions Co-infection cases were identified throughout the pandemic, not just in the time periods when highly divergent lineages were co-circulating. Co-infections involving different lineages or strains from the same lineage were occurring in the same proportion. Most cases were mild, did not require medical assistance and were not vaccinated, and a large proportion were associated with the hospital environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.