Magnesium alloys are well known for their biocompatibility and biodegradable properties [9], [27] owing to the fact that magnesium is a mineral crucial for human body, especially for bone tissue. There are studies [17] on using WE43 additively manufactured magnesium scaffolds for full bone and soft tissue regeneration. Moreover, magnesium implants in bones were investigated as having higher bone-implant interface strength than titanium ones [3]. In this paper, the results of the studies on MAP21 magnesium powder selective laser melting process optimization as a starting point for further bioapplications are presented. MAP21 magnesium alloy owing to its high mechanical properties, excellent vibration damping characteristic and good creep resistance is a promising material to be tested for scaffold structures. The study for the first time shows successful SLM manufacturing of dense samples made of MAP21 alloy. Using an algorithm based on design of experiment (DoE) method [21], the SLM process parameters were designated. The porosity was investigated as a SLM process optimization parameter. High density of produced sample, up to 99%, was achieved. Microstructure and oxidation level after selective laser melting (SLM) manufacturing were characterized. Fine grain microstructure and three kinds of precipitations were found Nd (Gd, Zr, Mg), Mg (Nd, Gd, Zr) and Mg (Zr, Nd, Gd, Zn)). In order to determine the mechanical properties of MAP21 alloy processed with SLM technology, static tensile tests and microhardness tests were conducted, resulting in mechanical properties (R m = 167 MPa, E = 38.6 GPa, 63-74 HB) comparable with as-cast alloy. A discussion was held on further research opportunities for biomedical use of SLM-ed MAP21 alloy.
The effect of zinc (Zn) injection on the stress corrosion cracking (SCC) initiation of an Alloy 182 weld metal and a 20% cold-worked (CW) type 316L stainless steel was investigated under simulated light water reactor conditions. Accelerated SCC initiation tests revealed that under both, boiling (BWR) and pressurized water reactor (PWR) conditions without Zn injection, Alloy 182 showed a higher SCC initiation susceptibility compared to the CW 316L stainless steel. With 40 ppb Zn injection, results indicate a tendency towards higher stress thresholds or lower crack densities for SCC initiation in both materials. In other words, Zn water chemistry seems to be able to mitigate SCC initiation. The optimized, Zn-treated oxide film is believed to be responsible for the improved SCC performance. However, no clear mitigation effects were observed when the specimens were pre-exposed to high-temperature water without Zn and then tested with Zn, which is likely related to the relatively short exposure time to the Zn-containing high-temperature water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.