The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences aff ect everybody in the world. Similarities with climate change are evident. Many eff orts have been made to describe the many diff erent facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to eff ective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.
Malaria is a serious global health problem, and rapid, accurate diagnosis is required to control the disease. An image processing algorithm to automate the diagnosis of malaria on thin blood smears is developed. The image classification system is designed to positively identify malaria parasites present in thin blood smears, and differentiate the species of malaria. Images are acquired using a charge-coupled device camera connected to a light microscope. Morphological and novel threshold selection techniques are used to identify erythrocytes (red blood cells) and possible parasites present on microscopic slides. Image features based on colour, texture and the geometry of the cells and parasites are generated, as well as features that make use of a priori knowledge of the classification problem and mimic features used by human technicians. A two-stage tree classifier using backpropogation feedforward neural networks distinguishes between true and false positives, and then diagnoses the species (Plasmodium falciparum, P. vivax, P. ovale or P. malariae) of the infection. Malaria samples obtained from the Department of Clinical Microbiology and Infectious Diseases at the University of the Witwatersrand Medical School are used for training and testing of the system. Infected erythrocytes are positively identified with a sensitivity of 85% and a positive predictive value (PPV) of 81%, which makes the method highly sensitive at diagnosing a complete sample provided many views are analysed. Species were correctly determined for 11 out of 15 samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.