[1] During continental rifting the interaction between faulting and magmatic intrusions is not well understood. Using InSAR and seismicity, we show that a $0.06 km 3 dike was intruded along the Dallol segment, Ethiopia and was accompanied by a M w 5.5 earthquake and associated fault slip along the western flank of the rift. The intrusion was fed by a previously unidentified magma chamber under Dallol. The total seismic moment release was $2.3 Â 10 17 Nm, $10% of the geodetic moment. This is a higher proportion than during the 2005-2009 Dabbahu rifting episode, which ranged between 1-4% of the geodetic moment. A larger component of faulting occurs at Dallol than at Dabbahu segment, a feature we interpret to be related to the proximity (10 km) of the Dallol segment to the rift margin, where welldeveloped faults facilitate slip. Citation: Nobile, A
Abstract. The inhabited zone of the Ugandan Rwenzori Mountains is affected by landslides, frequently causing loss of life, damage to infrastructure and loss of livelihood. This area of ca. 1230 km2 is characterized by contrasting geomorphologic, climatic and lithological patterns, resulting in different landslide types. In this study, the spatial pattern of landslide susceptibility is investigated based on an extensive field inventory constructed for five representative areas within the region (153 km2) and containing over 450 landslides. To achieve a reliable susceptibility assessment, the effects of (1) using different topographic data sources and spatial resolutions and (2) changing the scale of assessment by comparing local and regional susceptibility models on the susceptibility model performances are investigated using a pixel-based logistic regression approach. Topographic data are extracted from different digital elevation models (DEMs) based on radar interferometry (SRTM and TanDEM-X) and optical stereophotogrammetry (ASTER DEM). Susceptibility models using the radar-based DEMs tend to outperform the ones using the ASTER DEM. The model spatial resolution is varied between 10, 20, 30 and 90 m. The optimal resolution depends on the location of the investigated area within the region but the lowest model resolution (90 m) rarely yields the best model performances while the highest model resolution (10 m) never results in significant increases in performance compared to the 20 m resolution. Models built for the local case studies generally have similar or better performances than the regional model and better reflect site-specific controlling factors. At the regional level the effect of distinguishing landslide types between shallow and deep-seated landslides is investigated. The separation of landslide types allows us to improve model performances for the prediction of deep-seated landslides and to better understand factors influencing the occurrence of shallow landslides such as tangent curvature and total rainfall. Finally, the landslide susceptibility assessment is overlaid with a population density map in order to identify potential landslide risk hotspots, which could direct research and policy action towards reduced landslide risk in this under-researched, landslide-prone region.
Abstract:Landslides can lead to high impacts in less developed countries, particularly in tropical environments where a combination of intense rainfall, active tectonics, steep topography, and high population density can be found. However, the processes controlling landslide initiation and their evolution through time remains poorly understood. Here we show the relevance of the use of the multi-temporal differential radar interferometric (DInSAR) technique to characterise ground deformations associated with landslides in the rapidly-expanding city of Bukavu (DR Congo). We use 70 COSMO-SkyMed synthetic aperture radar images acquired between March 2015 and April 2016 with a mean revisiting time of eight days to produce ground deformation rate maps and displacement time series using the small baseline subset approach. We find that various landslide processes of different ages, mechanisms, and states of activity can be identified. Ground deformations revealed by DInSAR are found consistent with field observations and differential GPS measurements. Our analysis highlights the ability of DInSAR to grasp landslide deformation patterns affecting the complex tropical-urban environment of the city of Bukavu. However, longer time series will be needed to infer landside responses to climate, seismic, and anthropogenic drivers.
[1] Volcanoes are often associated with vertical collapse, due to deeper magma withdrawal. Calderas are the most notable type of vertical collapse, on the summit of volcanoes. Caldera collapse has been observed and monitored only at Miyakejima (Japan; 2000), Dolomieu (Reunion; 2007) and Fernandina (Galapagos;, highlighting our limited knowledge on its kinematic behavior. Here we use experimental models to investigate the kinematic evolution of calderas and vertical collapses in general. We extract velocity and strain fields using the Particle Image Velocimetry (PIV) technique, generating time series. Experimental vertical collapses undergoing constant subsidence velocity show three main kinematic behaviors: (1) continuous collapse, whose velocity is similar to the source subsidence velocity; (2) incremental collapse, with episodic (stepwise) accelerations along pre-existing ring structures; (3) sudden collapse, resulting from the upward migration of a cavity, only for T/D > 2 (T and D are the depth and width of the magma chamber, respectively) and without ring structures. The velocity in the collapsing column may increase up to four orders of magnitude with regard to the constant subsidence velocity of the source. Comparison to nature suggests that: (1) there are close kinematic similarities with monitored collapse calderas, explaining their incremental subsidence after the development of ring structures; (2) sudden pit crater formation is induced by the upward propagation of cavities, due to magma removal at depth and in absence of ring structures; (3) all these types of vertical collapses have a consistent mechanism of formation and kinematic behavior, function of T/D and the presence/absence of ring structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.