Anterior cruciate ligament (ACL) injury represents one of the main disorders affecting players, especially in contact sports. Even though several approaches based on artificial intelligence have been developed to allow the quantification of ACL injury risk, their applicability in training sessions compared with the clinical scale is still an open question. We proposed a machine-learning approach to accomplish this purpose. Thirty-nine female basketball players were enrolled in the study. Leg stability, leg mobility and capability to absorb the load after jump were evaluated through inertial sensors and optoelectronic bars. The risk level of athletes was computed by the Landing Error Score System (LESS). A comparative analysis among nine classifiers was performed by assessing the accuracy, F1-score and goodness. Five out nine examined classifiers reached optimum performance, with the linear support vector machine achieving an accuracy and F1-score of 96 and 95%, respectively. The feature importance was computed, allowing us to promote the ellipse area, parameters related to the load absorption and the leg mobility as the most useful features for the prediction of anterior cruciate ligament injury risk. In addition, the ellipse area showed a strong correlation with the LESS score. The results open the possibility to use such a methodology for predicting ACL injury.
The possibility of measuring predictive factors to discriminate athletes at higher risk of anterior cruciate ligament (ACL) injury still represents an open research question. We performed an observational study with thirteen female basketball players who performed monopodalic jumps and single-leg squat tests. One of them suffered from an ACL injury after the first test session. Data gathered from twelve participants, who did not suffer from ACL injury, were used for a reliability analysis. Parameters related to leg stability, load absorption capability and leg mobility showed good-to-excellent reliability. Path length, root mean square of the acceleration and leg angle with respect to the vertical axis revealed themselves as possible predictive factors to identify athletes at higher risk. Results confirm that six months after reconstruction represents the correct time for these athletes to return to playing. Furthermore, the training of leg mobility and load absorption capability could allow athletes to reduce the probability of new injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.