Abstract. Ecologists need a common language of plant traits in order to make comparisons across regions and scales, pool data, and maximize the utility of the data. To develop such a set of traits we began with the primary challenges faced by plants: dispersal, establishment, and persistence in order to identify fundamental traits. Most of these traits are hard to measure, but advances in comparative ecology have suggested a number of easy to measure analogs. Unfortunately, some of the fundamental traits have no simple analog. The common core list includes: seed mass, seed shape, dispersal mode, clonality, specific leaf area, leaf water content, height, above‐ground biomass, life history, onset of flowering, stem density, and resprouting ability. Most of the traits can be measured quantitatively, but several traits on the list must still be measured qualitatively due to logistical problems or lack of an easy analog. Key problem areas include: dispersal ability, capacity for vegetative spread, germination, palatability, plasticity, and all the various below‐ground traits. Comparative studies need to address these problem areas. The common core list is suggested as a common starting point for studies of functional ecology. The idiosyncrasies of regional floras and specific research agendas will dictate which traits can be ignored and those that need to be added.
Summary The results of a single publication stating that terrestrial plants emit methane has sparked a discussion in several scientific journals, but an independent test has not yet been performed. Here it is shown, with the use of the stable isotope 13C and a laser‐based measuring technique, that there is no evidence for substantial aerobic methane emission by terrestrial plants, maximally 0.3% (0.4 ng g−1 h−1) of the previously published values. Data presented here indicate that the contribution of terrestrial plants to global methane emission is very small at best. Therefore, a revision of carbon sequestration accounting practices based on the earlier reported contribution of methane from terrestrial vegetation is redundant.
The rates of growth, net rate of nitrate uptake and root respiration of 24 wild species were compared under conditions of optimum nutrient supply. The relative growth rate (RGR)of the roots of these species varied between 110 and 370 mg g‐1 day‐1 and the net rate of nitrate uptake between 1 and 7 mmol (g root dry weight)‐1 day‐1. The rate of root respiration was positively correlated with the RGR of the roots. Root respiration was also calculated from the measured rate of growth and nitrate uptake, using previously determined values for the costs of maintenance, growth and ion uptake of two slow‐growing species. The calculated rate of respiration was slightly lower than the measured one for slow‐growing species, but twice as high as measured rates for rapid‐growing species. This discrepancy was not due to a relatively smaller electron flow through the alternative pathway and, consequently, a more efficient ATP production in the fast‐growing species. Neither could variation in specific costs for root growth or maintenance explain these differences. Therefore, we conclude that fast‐growing species have lower specific respiratory costs for ion uptake than slow‐growing ones. Due partly to these lower specific costs of nutrient uptake, the fraction of respiration that rapid‐growing species spend on anion uptake is lower than that of slow‐growing species, in spite of the much higher rate of ion uptake of the fast‐growing ones.
Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. -Physiol. Plant. 72: 483491.The respiratory characteristics of the roots of Carex diandra Schrank and Carex acutiformis Ehrh. were investigated. The aims were, firstly to determine the respiratory energy costs for the maintenance of root biomass, for root growth and for ion uptake, and secondly to explain the higher rate of root respiration and ATP production in C. diandra. The three respiratory energy components were derived from a multiple regression analysis, using the relative growth rate and the net rate of nitrate uptake as independent variables and the rate of ATP production as a dependent variable. Although the rate of root respiration and ATP production was significantly higher in C. diandra than in C. acutiformis, the two species showed no significant difference in their rate of ATP production for the maintenance of biomass, in the respiratory energy coefficient for growth (the amount of ATP production per unit of biomass produced) and the respiratory energy coefficient for ion uptake (amount of ATP production per unit of ions absorbed). It is concluded that the higher rate of root respiration of C. diandra is caused by a higher rate of nitrate uptake. At relatively high rates of growth and nitrate uptake, the contribution of the rate of ATP production for ion uptake to the total rate of ATP production amounted to 38 and 25% for C. diandra and C. acutiformis, respectively. At this growth rate, the respiratory energy production for growth contributed 37 and 50%, respectively, to the total rate of ATP production. The relative contribution of the rate of ATP production for the maintenance of biomass increased from 25 to 70% with increasing plant age for both species. The results suggest that ion uptake is one of the major sinks for respiratory energy in roots. These experimentally derived values for the rate of ATP production for the maintenance of biomass, the respiratory energy coefficient for growth and the respiratory energy coefficient for ion uptake are discussed in relation to other experimentally and theoretically derived values. A. van der werf (corresponding author) et al.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.