To investigate the effect of L-arginine supplementation (L-ARG) on physiological and metabolic changes during exercise, we determined in a double-blind study the cardiorespiratory (heart rate, oxygen consumption (VO(2)) and carbon dioxide production (VCO(2)) and the metabolic (lactate and ammonia) responses to maximal exercise after either an intravenous L-ARG hydrochloride salt or placebo load in 8 healthy subjects. Exercise-induced increases in heart rate, VO(2) and VCO(2) were not significantly different after L-ARG or placebo. By contrast, peak plasma ammonia and lactate were significantly decreased after L-ARG load (60.6 +/- 8.2 vs. 73.1 +/- 9.1 micro mol x l(-1), p < 0.01 and 7.1 +/- 0.7 vs. 8.2 +/- 1.1 mmol x l(-1), p < 0.01, for ammonia and lactate, respectively). Plasma L-citrulline increased significantly during exercise only after L-ARG load, despite a concomitant decrease in plasma L-ARG. Furthermore, a significant inverse relationship was observed between changes in lactate and L-citrulline concentrations after L-ARG load (r = -0.84, p = 0.009). These results demonstrate that intravenous L-ARG reduces significantly exercise-induced increase in plasma lactate and ammonia. Taken together, the specific L-citrulline increase and the inverse relationship observed between L-citrulline and plasma lactate after L-ARG might support that L-ARG supplementation enhances the L-arginine-nitric oxide (NO) pathway during exercise.
The purpose of the study was to determine the potential beneficial effect of six weeks oral L-arginine supplementation (LAS) on endurance exercise, an important determinant of daily-life activity in patients with chronic stable heart failure (CHF). After an initial incremental maximal exercise test, CHF patients performed an identical thirty-minute interval endurance exercise test before and after six weeks with (L-arginine group; ARG) or without LAS (control group; CTL). Hemodynamic, respiratory, and metabolic parameters were determined at rest, during exercise, and during recovery. Mean heart rate decreased throughout exercise and recovery after LAS (- 8.2 +/- 1.4 b x min(-1); p = 0.003 and - 6.7 +/- 1.6 b x min(-1); p < 0.001, respectively), systemic blood pressure and respiratory parameters remaining unchanged. Resting L-argininaemia increased from 102 +/- 11 to 181 +/- 37 micromol x l(-1) (p < 0.004) and exercise-induced peak increase in plasma lactate was blunted after LAS (4.13 +/- 0.75 vs. 3.13 +/- 0.39 mmol x l(-1); p = 0.02). No significant change was observed in the control group. In heart failure patients, six weeks oral LAS enhances endurance exercise tolerance, reducing both heart rate and circulating lactates. This suggests that chronic LAS might be useful as a therapeutic adjuvant in order to improve the patient's physical fitness.
To investigate the participation of erythrocytes in the blood transport of amino acids during the course of intestinal absorption in humans, erythrocyte and plasma amino-acid concentrations were determined following ingestion of an oral load of amino acids. In addition to baseline plasma and erythrocyte amino acid concentrations in 18 subjects, plasma and erythrocyte amino acids kinetics during the 125 min following an oral amino acid load were further determined in 9 of the 18 subjects. The results showed that human erythrocytes contained most amino acids at similar or higher concentrations than plasma. Furthermore, the correlations observed between plasma and erythrocyte contents clearly indicated that erythrocytes were involved in the transport of amino acids by the blood. For some amino acids erythrocyte transport sometimes exceeded that of plasma. Significant correlation coefficients showed that strong plasma-erythrocyte relationships existed for alanine, valine, methionine, isoleucine, leucine, phenylalanine, and ornithine. In conclusion, our data supported the hypothesis that both blood compartments, plasma and erythrocytes, are involved significantly in the blood transport of amino acids in humans during the postabsorptive state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.