One of the critical issues in using micronutrient fertilisers is the comparison of methods and amounts of fertiliser use, which is very important from the aspect of increasing production and economic viewpoint. The aim of this research was to analyse the nutrient composition of different parts of the maize (Zea mays L. FAO 490) during the growing season with six-level nitrogen fertilisation supplies at five phenological stages. The study included essential nutrients as nitrogen (N), phosphorus (P), potassium (K), and sulphur (S) (in first cluster) and calcium (Ca) and magnesium (Mg) (in second cluster) in treatments on different leaf stage. Growth stages have different nutrient demands based on their actual demand. The first cluster included nitrogen and sulphur and the second included calcium and zinc in the NPK treatments on the stalk of plants. Nitrogen and potassium had their maximum effect on the stalk of maize during the growing season. Magnesium and copper were the second most important and desirable factors during the different growth stages and treatments in relation to the stalk. Nitrogen and calcium had their maximum impact during the yield formation stage and nitrogen and phosphorus had their most desirable effect during the grain filling stage. The effect of nitrogen on the quantitative and qualitative properties of maize showed that nitrogen increases the production of dry matter, grain yield, and its components. The maximum amount of absorption in the plants occurs before the accumulation of applied fertiliser, which is the prelude to the production of maximum biomass.
This study examined the physical properties of agricultural drought (i.e., intensity, duration, and severity) in Hungary from 1961 to 2010 based on the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The study analyzed the interaction between drought and crop yield for maize and wheat using standardized yield residual series (SYRS), and the crop-drought resilient factor (CDRF). The results of both SPI and SPEI (-3, -6) showed that the western part of Hungary has significantly more prone to agricultural drought than the eastern part of the country. Drought frequency analysis reveals that the eastern, northern, and central parts of Hungary were the most affected regions. Drought analysis also showed that drought was particularly severe in Hungary during 1970–1973, 1990–1995, 2000–2003, and 2007. The yield of maize was more adversely affected than wheat especially in the western and southern regions of Hungary (1961–2010). In general, maize and wheat yields were severely non-resilient (CDRF < 0.8) in the central and western part of the country. The results suggest that drought events are a threat to the attainment of the second Sustainable Development Goals (SDG-2). Therefore, to ensure food security in Hungary and in other parts of the world, drought resistant crop varieties need to be developed to mitigate the adverse effects of climate change on agricultural production.
Maize is one of the most widely used plants in the agricultural industry, and the fields of application of this plant are broad. The experiment was conducted at the Látókép Crop Production Experimental Station of the University of Debrecen, Hungary. Three mid-ripening maize hybrids with different FAO numbers were used in the present study. The effects of different nitrogen supplies were examined as a variable rate of abiotic stress and the interrelationship among the essential nutrients through the nutrient acquisition and partitioning of the different vegetative and generative plant parts. The results showed that NPK application compared to the control treatment (no fertilizer application) increased DM in all tissues of maize, while increasing nitrogen application from 120 to 300 kg ha−1 had no significant effect on this trait. The highest protein content was obtained with the nitrogen application of 120 kg ha−1, and the higher nitrogen fertilizer application had no significant effect on this trait. Seeds and leaves had a maximum zinc and manganese value in terms of nitrogen content (protein). Dry matter was positively correlated with nitrogen, potassium, and manganese content, while the dry matter had a negative correlation with nickel content. In general, to achieve a maximum quantitative and qualitative yield, it is recommended to use NPK fertilizer with a rate of 120 kg ha−1 N for maize cultivation.
Sustainability is one of the main components of precision farming that will lead to food security and production resources for current and future generations. The selection of suitable hybrids and fertilizers is among the methods that can directly influence sustainable agriculture and economic efficiency at the farm level, providing accurate site-specific nutrient management strategies for yield maximization. This experiment included two fertilizer sources in ten maize hybrids in four replications for three consecutive years (2018–2020). The experiment was carried out at the Látókép Crop Production Experimental Site of the University of Debrecen, Hungary. The results of the ANOVA showed that genotype, year, and fertilizer levels had various effects on grain yield, oil, protein, and starch content. FAO340 had maximum grain yield on different fertilizers (NPK and N), and FAO350 had maximum protein content. To gain the best performance and maximum yield of maize on protein and oil, FAO350 is recommended for protein and FAO340 for oil content. The parameters of grain yield, oil content, protein content, and starch content affected by NPK fertilizer provide the stability of grain yield parameters. FAO360, FAO420, and FAO320 hybrids had their maximum desirable N fertilizer doses and NPK fertilizer stability in this research. These results indicate that FAO360, FAO420, and FAO330 hybrids had their maximum potential yield in different fertilizer and environmental conditions. Based on this multi-year study, the complete NPK fertilizer with 150 kg/ha nitrogen, 115 kg/ha potassium, 135 kg/ha phosphorus is recommended to be used on maize hybrids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.