No abstract
The Colorado Plateau is one of North America's five major deserts, encompassing 340,000 km 2 of the western United States, and offering many opportunities for restoration relevant to researchers and land managers in drylands around the globe. The Colorado Plateau is comprised of vast tracts of public land managed by local, state, and federal agencies that oversee a wide range of activities (e.g., mineral and energy extraction, livestock grazing, and recreation). About 75% of the Plateau is managed by federal and tribal agencies and tens of millions of people visit the Plateau's public lands each year. However, even in the face of this diverse use, our knowledge of effective ways to restore Plateau ecosystems remains relatively poor. Further, the multiple agencies on the Plateau have mandates that differ greatly in allowable practices, restoration needs, and desired outcomes. The Colorado Plateau is also expected to undergo ecosystem shifts in the face of climate change, further complicating management decisions and potentially limiting some options while creating others. Here, we explore the current state of Colorado Plateau restoration science and underscore key challenges and opportunities for improving our capacity to maintain the myriad of services provided by these desert ecosystems. We highlight past research efforts and future needs related to restoration concepts, including consideration and design of novel ecosystems, mitigation for and adaptation to climate change, use of genetically diverse seed adapted for current and future conditions, and the value of strong multi-agency and stakeholder collaborations in restoring systems on the Colorado Plateau and beyond.
Understanding local adaptation to climate is critical for managing ecosystems in the face of climate change. While there have been many provenance studies in trees, less is known about local adaptation in herbaceous species, including the perennial grasses that dominate arid and semiarid rangeland ecosystems. We used a common garden study to quantify variation in growth and drought resistance traits in 99 populations of Elymus elymoides from a broad geographic and climatic range in the western United States. Ecotypes from drier sites produced less biomass and smaller seeds, and had traits associated with greater drought resistance: small leaves with low osmotic potential and high integrated water use efficiency (δ13C). Seasonality also influenced plant traits. Plants from regions with relatively warm, wet summers had large seeds, large leaves, and low δ13C. Irrespective of climate, we also observed trade‐offs between biomass production and drought resistance traits. Together, these results suggest that much of the phenotypic variation among E. elymoides ecotypes represents local adaptation to differences in the amount and timing of water availability. In addition, ecotypes that grow rapidly may be less able to persist under dry conditions. Land managers may be able to use this variation to improve restoration success by seeding ecotypes with multiple drought resistance traits in areas with lower precipitation. The future success of this common rangeland species will likely depend on the use of tools such as seed transfer zones to match local variation in growth and drought resistance to predicted climatic conditions.
Restoration practitioners often rely on seeds of widely available cultivars representing native species but nonlocal germplasm. Cultivation improves the supply of plant materials and minimizes revegetation costs, but can also favor agronomic traits, and resulting vigor may affect the competitive ability and long‐term persistence of cultivated genotypes at restoration sites. We compared cultivated, restored, and wild populations of Pascopyrum smithii (western wheatgrass) in a greenhouse study to test the extent to which cultivars outcompete local plants in biomass production, and to determine if morphological differences (including height and number of leaves) among cultivated and wild populations persist at restoration sites over time. We found evidence of vigor and greater competitive ability of cultivars in seed mass, growth rate, plant height, and biomass and this advantage occurred when plants were grown alone or in competition with other seed sources. Cultivar vigor persisted at restoration sites over 30 years, but restored populations more closely resembled wild, local populations when cultivars were planted in closer proximity to nearby undisturbed sites. This study supports the cultivar vigor hypothesis and provides evidence for the long‐term persistence of cultivated traits in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.