A procedure for screening 105 veterinary drugs in foods by liquid chromatography tandem mass-spectrometry (LC-MS/MS) is presented. Its scope encompasses raw materials of animal origin (milk, meat, fish, egg and fat) but also related processed ingredients and finished products commonly used and manufactured by food business operators. Due to the complexity of the matrices considered and to efficiently deal with losses during extraction and matrix effects during MS source ionisation, each sample was analysed twice, that is 'unspiked' and 'spiked at the screening target concentration' using a QuEChERS-like extraction. The entire procedure was validated according to the European Community Reference Laboratories Residues Guidelines. False-negative and false-positive rates were below 5% for all veterinary drugs whatever the food matrix. Effectiveness of the procedure was further demonstrated through participation to five proficiency tests and its ruggedness demonstrated in quality control operations by a second laboratory.
An LC-MS/MS method for screening 14 aminoglycosides in foodstuffs of animal origin is presented. Its scope includes raw materials and processed ingredients but also finished products composed of milk, meat, fish, egg or fat. Aminoglycosides are extracted in an acidic aqueous solution, which is first recovered after centrifugation, then diluted with a basic buffer and finally purified by molecularly imprinted polymer-solid phase extraction (MIP-SPE). Analytes are detected within 8 min by ion-pair reversed phase LC-MS/MS. Due to the large range of foodstuffs involved, the variability of matrix effects led to significant MS signal variations. This was circumvented by systematically extracting each sample twice, i.e. 'unspiked' and 'spiked' at the screening target concentration of 50 µg kg. The method was validated according to the European Community Reference Laboratories Residues Guidelines giving false-negative and false-positive rates ≤3% for all compounds. Ruggedness of the method was further demonstrated in quality control operations by a second laboratory. The 14 aminoglycosides in water-based standard solutions were stable for up to 6 months when stored at either -80°C, -20°C or at 4°C storage temperatures.
This study is the first to examine the role of choline and glycine betaine, naturally present in some foods, in particular in cereal grains, to generate N,N-dimethylpiperidinium (mepiquat) under Maillard conditions via transmethylation reactions involving the nucleophile piperidine. The formation of mepiquat and its intermediates piperidine - formed by cyclisation of free lysine in the presence of reducing sugars - and N-methylpiperidine were monitored over time (240°C, up to 180 min) using high-resolution mass spectrometry in a model system comprised of a ternary mixture of lysine/fructose/alkylating agent (choline or betaine). The reaction yield was compared with data recently determined for trigonelline, a known methylation agent present naturally in coffee beans. The role of choline and glycine betaine in nucleophilic displacement reactions was further supported by experiments carried out with stable isotope-labelled precursors (¹³C- and deuterium-labelled). The results unequivocally demonstrated that the piperidine ring of mepiquat originates from the carbon chain of lysine, and that either choline or glycine betaine furnishes the N-methyl groups. The kinetics of formation of the corresponding demethylated products of both choline and glycine betaine, N,N-demethyl-2-aminoethanol and N,N-dimethylglycine, respectively, were also determined using high-resolution mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.