On the basis of observations at four enhanced coalbed methane (ECBM)/CO 2 sequestration pilots, a laboratory-scale study was conducted to understand the flow behavior of coal in a methane/CO 2 environment. Sorption-induced volumetric strain was first measured by flooding fresh coal samples with adsorptive gases (methane and CO 2 ). In order to replicate the CO 2 -ECBM process, CO 2 was then injected into a methane-saturated core to measure the incremental "swelling." As a separate effort, the permeability of a coal core, held under triaxial stress, was measured using methane. This was followed by CO 2 flooding to replace the methane. In order to best replicate the conditions in situ, the core was held under uniaxial strain, that is, no horizontal strain was permitted during CO 2 flooding. Instead, the horizontal stress was adjusted to ensure zero strain. The results showed that the relative strain ratio for CO 2 /methane was between 2 and 3.5. The measured volumetric strains were also fitted using a Langmuir-type model, thus enabling calculation of the strain at any gas pressure and using the analytical permeability models. For permeability work, effort was made to increase the horizontal stress to achieve the desired zero horizontal strain condition expected under in situ condition, but this became impossible because the "excess" stress required to maintain this condition was very large, resulting in sample failure. Finally, when CO 2 was introduced and horizontal strain was permitted, permeability reduction was an order of magnitude greater, suggesting that the "excess" stress would have reduced it significantly further. The positive finding of the work was that the "excess" stresses associated with injection of CO 2 are large. The excess stresses generated might be sufficient to cause microfracturing and increased permeability, and improved injectivity. Also, there might be a weakening effect resulting from repeated CO 2 injection, as has been found to be the case with thermal cycling of rocks.
We propose a representation of the Indian summer monsoon rainfall in terms of a probabilistic model based on a Markov Random Field, consisting of discrete state variables representing low and high rainfall at grid-scale and daily rainfall patterns across space and in time. These discrete states are conditioned on observed daily gridded rainfall data from the period 2000-2007. The model gives us a set of 10 spatial patterns of daily monsoon rainfall over India, which are robust over a range of user-chosen parameters as well as coherent in space and time. Each day in the monsoon season is assigned precisely one of the spatial patterns, that approximates the spatial distribution of rainfall on that day. Such approximations are quite accurate for nearly 95% of the days. Remarkably, these patterns are representative (with similar accuracy) of the monsoon seasons from 1901 to 2000 as well. Finally, we compare the proposed model with alternative approaches to extract spatial patterns of rainfall, using empirical orthogonal functions as well as clustering algorithms such as K-means and spectral clustering.
Nepal and Bangladesh, is influenced by local and remote forces. In terms of geographical size, NE-India constitutes of about 8% of India's total size. Its population is approximately 40 million, which represents around 3.1% of the total Indian population. This region has a predominantly humid sub-tropical climate with hot, humid summers, severe monsoons and mild winters. Along with the west coast of India, this region has some of the Indian sub-continent's last remaining rain forests, which supports diverse flora and fauna and several crop species. Geographically, two-thirds of the area is a hilly terrain interspersed with valleys and plains. The mean summer monsoon rainfall over the NE-Indian region is around 1400 mm making for huge water and hydropower potential. However, this region has been exhibiting a declining trend in the summer monsoon rainfall since the last 4-5 decades (see Fig. 3, Fig. 4a in Preethi et al. 2016). Hence, it becomes imperative to examine the possible drivers of this variability.Significance for long-term prediction of summer monsoon, considering its massive socio-economic impacts, have been widely attributed to the slowly varying boundary conditions such as sea surface temperature (SST) and snow cover (Shukla 1998). In general, rainfall distribution pattern over different regions of India is inhomogeneous due to influence of several local and remote factors. For instance, over the central Indian plain region, monsoon trough and the Himalayas along with local and external factors play a dominant role in its interannual rainfall variability. Likewise, the northwest region is influenced by the dry climates of the Thar Desert and the Western Himalayas. Apparently from the geographical features as described above, the rain producing mechanism of NE rainfall is a complex phenomenon and is largely dominated by an elevated orography of the Eastern Himalayas and large forests. The NE sector may be considered as a separate macro-region within the Indian Abstract This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.
With the introduction of cisplatin, the outcome of children with malignant germ cell tumors (MGCT) has improved to nearly 90% 5 year survival. Over the years, through the results of various multinational co-operative trials, the chemotherapy and surgical guidelines for both the gonadal and extra-gonadal MGCTs have been refined to decrease the early and late morbidities and at the same time improve survival. Introduction of risk categorization has further added to this effort. There has been no recommendation on how the children with malignant germ cell tumors should be treated in India. The current manuscript is written with the objective of developing a consensus guideline for practitioners at a National level. Based on extensively reviewed literature and personal experience of the major pediatric oncology centres in India, the ICMR Expert group has made recommendations for management of children with MGCT India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.