We consider a robot that must sort objects transported by a conveyor belt into different classes. Multiple observations must be performed before taking a decision on the class of each object, because the imperfect sensing sometimes detects the incorrect object class. The objective is to sort the sequence of objects in a minimal number of observation and decision steps. We describe this task in the framework of partially observable Markov decision processes, and we propose a reward function that explicitly takes into account the information gain of the viewpoint selection actions applied. The DESPOT algorithm is applied to solve the problem, automatically obtaining a sequence of observation viewpoints and class decision actions. Observations are made either only for the object on the first position of the conveyor belt or for multiple adjacent positions at once. The performance of the single- and multiple-position variants is compared, and the impact of including the information gain is analyzed. Real-life experiments with a Baxter robot and an industrial conveyor belt are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.