Purpose Messenger RNA (mRNA) has shown great promise for vaccine against both infectious diseases and cancer. However, mRNA is unstable and requires a delivery vehicle for efficient cellular uptake and degradation protection. So far, lipid nanoparticles (LNPs) represent the most advanced delivery platform for mRNA delivery. However, no published studies have compared lipid microparticles (LMPs) with lipid nanoparticles (LNPs) in delivering mRNA systematically, therefore, we compared the impact of particle size on delivery efficacy of mRNA vaccine and subsequent immune responses. Methods Herein, we prepared 3 different size lipid particles, from nano-sized to micro-sized, and they loaded similar amounts of mRNA. These lipid particles were investigated both in vitro and in vivo , followed by evaluating the impact of particle size on inducing cellular and humoral immune responses. Results In this study, all mRNA vaccines showed a robust immune response and lipid microparticles (LMPs) show similar efficacy with lipid nanoparticles (LNPs) in delivering mRNA and preventing cancer. In addition, immune adjuvants, either toll like receptors or active molecules from traditional Chinese medicine, can improve the efficacy of mRNA vaccines. Conclusions Considering the efficiency of delivery and endocytosis, besides lipid nanoparticles with size smaller than 150 nm, lipid microparticles (LMPs) also have the potential to be an alternative and promising delivery system for mRNA vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.