Nanofiber mats of poly(vinyl chloride) (PVC) and cellulose acetate (CA) encapsulated with silver (Ag) nanoparticles were fabricated via electrospinning for potential use as antimicrobial food packaging materials. 16 wt% PVC was prepared in 1:1 w/w tetrahydrofuran-N,N-dimethylformamide while 16 wt% CA was prepared in 3:2 (w/w) Acetone-N,N-dimethylformamide. Scanning electron microscopy analysis showed that thinner fibers could be electrospun from cellulose acetate as compared to poly(vinyl chloride) at the same solution concentrations with fiber diameters ranging from 70 to 130 nm for cellulose acetate and 180-340 nm for poly(vinyl chloride). Nanofiber diameter reduced with addition and increase of silver nanoparticles from 0 to 1 wt%. Due to the smaller cellulose acetate nanofiber diameter, its mats had lower air permeability rates. Tensile strength tests indicated that the nanofiber mats had marginal to good tensile strength values relative to film based packaging materials. Antimicrobial examination of the nanofiber mats against yeast and mould indicated that there was inhibited growth of the microorganisms on mats containing silver nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.