Noise pollution is one of the harmful physical sources in the textile industry, which is among those industries that are faced with noise exposure problems. The results of environmental sound measurements at modern textile mills have shown that the sound pressure level varied from 95 to 130 dB, where the highest sound pressure level was at weaving machines. Textile insulation materials can be fitted in order to decrease sound pollution at a low cost. The objective of this work is to design a sound absorber that can be fixed to the body of the machines, at the point of the noise generation, to reduce noise pollution. Poly(lactic acid) (PLA), which is an environmentally friendly material, was used to produce different samples of meltblown nonwoven absorbers to be used for damping the noise of textile machinery. PLA meltblown nonwoven fabric with the areal density of 16.7 g/m2, average fiber diameter of 1.1 µm, mean pore diameter of 9.8 µm and thickness of 0.27 mm exhibited significant sound absorption. The sample with the smallest average fiber diameter among those investigated had the highest damping effect: 23.95, 41.29 and 29.32 dBA at frequencies of 400, 1000 and 1500 Hz, respectively. Our goal is to have a practical tool that accurately evaluates the absorber sound damping under the actual running conditions of the textile machinery. The design of the absorber from one layer of the PLA meltblown nonwoven over a rigid polyurethane foam sheet had an excellent sound absorption property.
An analysis of fiber mechanics during cutting is conducted using a rotating cutting set up. It was found that high cutting speeds, low cutting angles, and high cutting normal forces lead to low values of cutting force. In this study, a set of high performance organic and inorganic fiber types are tested throughout different conditions of cut testing. Inorganic fibers gave the lowest specific cutting force. Values of cutting stresses on the edge of the blade were proved to be a function of fibers’ Young’s moduli. Higher Young’s moduli give lower cutting stresses on the blade edge while cutting fibers. Organic fibers were found to have a higher cutting resistance than carbon and glass fibers. A significant indirect correlation was found between the shear stress of the fibers and the fiber Young’s modulus. The value of the cutting force is significantly affected by both normal force and cutting velocity. The analysis of fiber mechanics during cutting is conducted using a rotating cutting set-up. It was found that high cutting speeds, low cutting angles, and high cutting normal forces lead to low values of cutting force. In this study, a set of high performance organic and inorganic fiber types are tested throughout different conditions of cut testing. Inorganic fibers gave the lowest specific cutting force. Values of cutting stresses on the edge of the blade were proved to be a function of fibers Young’s modulus. Higher Young’s modulus gives lower cutting stresses on the blade edge while cutting fibers. Organic fibers were found to have a higher cutting resistance than carbon and glass fibers. A significant indirect correlation was found between the shear stress of the fibers and the fibers Young’s modulus. The value of the cutting force is significantly affected by the normal force, cutting angle, and cutting velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.