Microstructural study of laser-beam-welded IN 738 superalloy was carefully performed to better understand the causes of heat-affected zone (HAZ) cracking and to determine an improved approach of alleviating the weldability problem. The HAZ cracks in the alloy were intergranular liquation cracks that resulted from the liquation reaction of both secondary solidification products (MC carbides and c-c¢ eutectic) and solid-state reaction products (c¢ particles) present in the preweld material. In contrast to the expectation based on Chadwick's equation, a reduction of grain boundary liquid film thickness did not produce a decrease in HAZ cracking owing to increased base alloy hardness that accompanied a preweld heat treatment designed to reduce the intergranular liquation. Moreover, a major factor limiting the effectiveness of an existing preweld heat treatment with low base alloy hardness in reducing HAZ cracking was found to be the formation of intergranular M 5 B 3 boride particles during the heat treatment. These borides can widen the HAZ brittle temperature range (BTR) during weld cooling and increase the propensity for cracking. Based on the results, a new preweld heat treatment that induces a moderate hardness and precludes grain boundary boride formation was found and was shown to produce a significant reduction in HAZ cracking in the welded alloy compared to the most effective pre-existing preweld heat treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.