The objective of this study was to assess the prediction of partial volumes with nonlinear mixed modeling for Pinus taeda. The volume of 558 trees was measured. The four-parameter logistic model was used in its modified form for the nonlinear mixed approach and, for comparison, the 5 th degree polynomial was used. In the mixed modeling, the random effects diameter, age and place were inserted. The statistical criteria used to assess the quality of the adjustment were the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), standard error of the estimate (Syx) and residual graphical analysis. Among the random effects analyzed, age obtained the best adjustment. However, to predict partial volumes, it was noticed that, regardless of the analyzed portion of the trunk, the 5 th degree polynomial had the best estimates, with a mean standard error of 20.1% of the estimate compared to 51.8% of the logistic.
PALAVRAS-CHAVE Crescimento e produção florestal Pognose Modelagem florestal Programa econométrico KEYWORDS Forest growth and yield Prognosis Forest modeling Econometric software RESUMO: Modelos de crescimento e produção são ferramentas essenciais no planejamento de empresas florestais, sendo o modelo de Clutter um dos mais empregados no Brasil. O objetivo foi demonstrar os passos necessários para o ajuste do modelo de Clutter pelo método dos mínimos quadrados em dois estágios, utilizando o programa Gretl. Para isso, foram empregados dados de parcelas permanentes em povoamentos clonais de eucalipto, com idade variando de 27 a 78 meses. A forma de organização da base de dados e as etapas para sua importação para o programa foram indicadas em detalhes. As variáveis necessárias ao ajuste de modelo e a disposição do sistema de equações também foram explicadas. Finalmente, foram comentados os resultados e sua interpretação. O programa Gretl representa uma alternativa eficaz no ajuste do modelo de Clutter, sobretudo pela facilidade de manuseio e por não possuir custos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.