Background Trachyspermum ammi (L.) Sprague is used for treating gastrointestinal disorders. Several studies indicated gastric antiulcer activity of T. ammi extract, yet the effect of its essential oil has not been studied on. Objectives The present study evaluates chemical composition of T. ammi essential oil and anti-peptic ulcer effect of the essential oil as well as its three major components in ethanol induced-gastric ulcers in rats. Methods Primarily chemical composition of the essential oil was analyzed by gas chromatography-mass spectrometry (GC/MS). Rats received the essential oil (500, 250, 125, 62.5, 31.25 mg/kg), thymol (30, 100 mg/kg), para-cymene (100, 150 mg/kg) and gamma-terpinene (100, 150 mg/kg) using gavage tube along with ethanol 80%. Finally, dissected stomachs were assessed both macroscopically and microscopically to evaluate anti-ulcerative effect of the essential oil and the pure compounds. Moreover, molecular docking was utilized to explore the interactive behavior of the main components with active site residues of H + /K + ATPase. Results Analysis of the essential oil indicated that para-cymene (37.18%), gamma-terpinene (35.36%) and thymol (20.51%) are the main components. Administration of different doses of the essential oil noticeably diminished the number of peptic ulcers in a dose-dependent manner. Among the main components, thymol was more potent than para-cymene and gamma-terpinene. Administration of the essential oil (500 mg/kg) and thymol (100 mg/kg) observed maximum inhibition percentage (98.58% and 79.37%, respectively). Molecular docking study provides the evidence of thymol ability to inhibit H + /K + ATPase. Conclusions The findings revealed that T. ammi essential oil can be applied to treat gastric ulcer as a natural agent.
Today, finding natural polymers with desirable properties for use in various industries is one of the critical axes of research in the world. Polysaccharides are a group of natural polymers that have various applications in the pharmaceutical industry. The attachment of monosaccharides forms polysaccharides through glycosidic bonds that are widely found in various sources, including plants. Genus Astragalus belongs to the Fabaceae family. Plants belonging to this genus have different polysaccharides. Astragalus polysaccharides (APS) have attracted a great deal of attention among natural polymers discussed as suitable candidates for use in pharmaceutical formulations and preparation of new drugs to control COVID-19 infection because they are non-toxic, biodegradable, and biocompatible. Currently, APS has great drug potential for curing or treating various diseases. Due to the different biological activities of polysaccharides, including Astragalus, this study has investigated the chemical structure of APS, research report on antiviral, anti-inflammatory, and stimulation of cytokine secretion by these polysaccharides. Also, in this study, the pharmaceutical approaches of APS compounds, as a natural, new and inexpensive source, have been.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.