Understanding the data and reaching accurate conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have been widely used for this purpose in various fields. One critically important yet less explored aspect is capturing and analyzing uncertainties in the data and model. Proper quantification of uncertainty helps to provide valuable information to obtain accurate diagnosis. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, various novel deep learning techniques have been proposed to deal with such uncertainties and improve the performance in decision making.
We present the coronary artery disease (CAD) database, a comprehensive resource, comprising 126 papers and 68 datasets relevant to CAD diagnosis, extracted from the scientific literature from 1992 and 2018. These data were collected to help advance research on CAD-related machine learning and data mining algorithms, and hopefully to ultimately advance clinical diagnosis and early treatment. To aid users, we have also built a web application that presents the database through various reports.
Motion sickness is a common perturbation experienced by humans in response to motion stimuli. The motion can happen in either real or virtual environments perceived by the vestibular system and visual illusion. The extensive varieties of research studies have been conducted in order to determine and evaluate aspects of motion sickness and its symptoms. To provide insights upon physiological changes in regards to motion sickness, researchers have used subjects from different ages, gender in addition to electrode positions and environmental conditions. The main purpose of this study is to provide a comprehensive review and comparison of the existing research studies regarding aspects of interference of the existence and augmentation of motion sickness. In this paper, we discuss the appearance of symptoms after motion sickness and summarize the physiological behaviors and emotions via a range of scenarios. In addition, the existing methods for measuring motion sickness levels are compared and discussed in detail. This study considers a number of important factors such as age, gender, health condition, participants (non/fatigue or non/drowsiness), road conditions, and different experimental setups impacting the results of motion sickness. Finally, this paper presents a range of practical methods to minimize and prevent the unpleasant side effects of motion sickness. This includes air ventilation, homogenized road/virtual environment features, and providing comfortable setup and pre-movement before visual acceleration. A deeper understanding of changes in physiological signals during vection helps us to confirm the traditional subjective report and also improves our knowledge in the concept the vection. INDEX TERMS Motion sickness, vestibular and visual conflict, vection, eye movement, postural instability, physiological signals.
The level of consciousness and the concentration of drivers while driving play a vital role for reducing the number of accidents. In recent decade, in-vehicle infotainment (IVI) [or in-car entertainment (ICE)] is one of the main reasons that lead to degradation of drivers performance and losing awareness. However, the impacts of some other reasons, such as drowsiness and driving fatigue, are entirely important as well. Hence, early detection of such performance degradation using different methods is a very hot research domain. To this end, the data set is collected using two different simulated driving scenarios: normal and loaded drive (17 elderly and 51 young/35 male and 33 female). This paper, therefore, concentrates on driving performance analysis using various machine learning techniques. The optimization part of the proposed methodology has two main steps. In the first step, the performances of the K-nearest neighbors (KNN), support vector machine (SVM), and naive Bayes (NB) algorithms are improved using bagging, boosting, and voting ensemble learning techniques. Afterward, four well-known evolutionary optimization algorithms [the ant lion optimizer (ALO), whale optimization algorithm (WOA), particle swarm optimization (PSO), and grey wolf optimizer (GWO)] are applied to the system for optimizing the parameters and as a result enhance the performance of whole system. The GWO-voting approach has the best performance compared to other hybrid methods with the accuracy of 97.50%. The obtained outcomes showed that the proposed system can remarkably raise the performance of the classical algorithms used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.