The biogenesis of silver nanoparticles by fungi is an ecologically clean and nontoxic method compared to other physical and chemical methods. Thus, we aimed to discuss the mycosynthesis of extracellular size-controlled AgNPs. After comprehensive screening, Aspergillus fumigatus BTCB10 (KY486782) was selected for the synthesis of AgNPs of controlled size. Characterization was performed by UV-Vis spectrophotometer, Zetasizer, X-Ray Diffraction (XRD), FTIR (Fourier-transform infrared), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM) along with functional assays—antibacterial and MTT assays. Data suggested that under optimized conditions, i.e., temperature 25°C, AgNO3 concentration 1 mM, biomass 7 g, fungal culture age 7 days, pH 6, ratio of cell-free filtrate (CFF)/silver nitrate (3 : 2), NaCl 20%, and under dark light, the smallest size AgNPs of 0.681 nm with 100% monodispersity was obtained as evident by a zeta potential of -23.4 mV, UV-Vis band at 400 nm, and the presence of O-H and C=O groups confirmed by ATR-FTIR; XRD revealed the crystalline nature of AgNPs; additionally, cube-shaped AgNPs were revealed by Scanning Electron Microscopy (SEM). Moreover, synthesized AgNPs exhibited antibacterial activity against multidrug-resistant bacterial strains, notably, Klebsiella pneumoniae BTCB04, Acinetobacter BTCB05, Pseudomonas aeruginosa BTCB01, and Escherichia coli BTCB03, while maximum 7-fold was observed with Acinetobacter BTCB05. AgNPs demonstrated no cytotoxic activity against HepG2 cells; however, in combination with cisplatin, antiproliferative and cytotoxic effects became more evident and significant in comparison to control and as single agent. Taken together, the data suggested that economical and smallest size AgNPs can be biosynthesized from Aspergillus fumigatus BTCB10 and be used as antibacterial and antiproliferative agents in combination with current drugs against clinically relevant multiple drug-resistant bacterial and tumoral cells. Further studies are required to confirm their effects employing in vivo disease models.
The present study deals with the isolation screening and optimization of fungal strain for pectinase production. The fungal strains were isolated from different sources, including soil, fruits etc. Qualitative screening was performed on the basis of the pectin hydrolysis zone. While, quantitative screening was carried out employing submerged fermentation. Among all the strains the strains showing highest pectinolytic potential were selected identified and assigned the code Aspergillus niger ABT-5.The influence of different fermentation media on pectinase production was evaluated. The M5 medium containing 10g wheat bran, nutrient medium containing (g/l) of (NH 4 ) 2 SO 4 6.0, K 2 HPO 4 6.0, KH 2 PO 4 6.0, MgSO 4 .7H 2 O 0.1 gave the highest pectinase production. The other important physico chemical parameters including incubation period, temperature, and volume of media, size of inoculum, carbon and nitrogen sources were also optimized for pectinase production. The highest pectinase production (15.5U/ml) was obtained at 72h of incubation, pH 6, temperature 30°C, volume of media 50ml. Fructose and urea were designated as best carbon and nitrogen sources subsequently.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of the key targets for atherosclerosis drug development as its binding with low-density lipoprotein receptor leads to atherosclerosis. The protein-ligand interaction helps to understand the actual mechanism for the pharmacological action. This research aims to discover the best inhibitory candidates targeting PCSK9. To start with, reported ACE inhibitors were incorporated into pharmacophore designing using PharmaGist to produce pharmacophore models. Selected models were later screened against the ZINC database using ZINCPHARMER to define potential drug candidates that were docked with the target protein to understand their interactions. Molecular docking revealed the top 10 drug candidates against PCSK9, with binding energies ranging from -9.8 kcal·mol-1 to -8.2 kcal·mol-1, which were analyzed for their pharmacokinetic properties and oral bioavailability. Some compounds were identified as plant-derived compounds like (S)-canadine, hesperetin or labetalol (an antihypertensive drug). Molecular dynamics results showed that these substances formed stable protein-ligand complexes. (S)-canadine-PCSK9 complex was the most stable with the lowest RMSD. It was concluded that (S)-canadine may act as a potential inhibitor against atherosclerosis for the development of new PCSK9 inhibitory drugs in future in vitro research.
ABSTRACT:The current study was carried out to evaluate the effects of gamma irradiation on the epiphytic microflora and ripening process of the green Dwarf Cavendish bananas harvested at the three-quarter stage of the maturity. The mature green bananas were irradiated using Cobalt-60 as the source of irradiation at different dosages of 0.5, 0.75 and 1.0 kGy. The mean life of both the experimental and control group of fruits was analyzed under ambient conditions. For all the treatments the microbial potential, the decay percent and the ripening behavior of the fruits were recorded. Results revealed that the applied radiation doses reduced the decay incidence, delayed ripening process and greatly inhibit the microbial growth (total bacterial and fungal count) thereby enhancing the shelf life of bananas. Irradiation dose of 1.0 kGy was found to be the most effective dose to positively maintain the stored bananas under ambient conditions. The mean life of bananas was extended by 14 days. The identification of the enteric bacteriaeaceae through API 20 E strips revealed the presence of Shigella sonnie on the fruit surface along with Escherichia coli and a nonfermentor spp. The dominant spoilage causing fungi identified were Aspergillus niger, Aspergillus flavus, Collotrichum musae, Fusarium oxysporum,Mucor spp, Lasiodiplodia theobromea and Rhizopus stolonifer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.