We present a photonic-crystal (PC) channel-drop filter (CDF) design based on 3x3 PC ring resonators. The normalized transmission spectra for single-ring and dual-ring configurations have been investigated using two-dimensional finite-difference time-domain (FDTD) technique in a square-lattice dielectric-rod PC structure. First, we investigate a single ring and we show that backward and forward dropping is possible in the third communication window. Then we add another ring and waveguide to develop a new CDF. This filter consists of an input and three outputs. Our FDTD simulation yields more than 85% efficiency over each output port.
This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.