To overcome energy crises, attention is being paid to saving energy from household appliances. Traditional compressors are in need of being replaced by efficient linear compressors. This paper presents a new tubular moving magnet linear oscillating actuator (TMM-LOA) for compressor application. The proposed topology utilizes outer mover topology with separators between the mover and stator modules. The number of stator and mover modules can be increased or decreased based on the requirement. The addition of a separator avoids the flux cancellation and makes the proposed topology fault-tolerant. The design variables are optimized by using a parametric sweep, and the performance in terms of thrust force is observed. Both the static and transient analyses were performed to analyze the machine performance at various currents and stroke. Both mechanical and electrical resonance phenomena are discussed. The efficiency of the proposed TMM-LOA is calculated for one, two and three modules. Finally, the proposed topology is compared with other topologies proposed in the literature to show the superiority of the proposed design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.