Metaheuristic algorithms have been widely used to solve diverse kinds of optimization problems. For an optimization problem, population initialization plays a significant role in metaheuristic algorithms. These algorithms can influence the convergence to find an efficient optimal solution. Mainly, for recognizing the importance of diversity, several researchers have worked on the performance for the improvement of metaheuristic algorithms. Population initialization is a vital factor in metaheuristic algorithms such as PSO and DE. Instead of applying the random distribution for the initialization of the population, quasirandom sequences are more useful for the improvement the diversity and convergence factors. This study presents three new low-discrepancy sequences named WELL sequence, Knuth sequence, and Torus sequence to initialize the population in the search space. This paper also gives a comprehensive survey of the various PSO and DE initialization approaches based on the family of quasirandom sequences such as Sobol sequence, Halton sequence, and uniform random distribution. The proposed methods for PSO (TO-PSO, KN-PSO, and WE-PSO) and DE (DE-TO, DE-WE, and DE-KN) have been examined for well-known benchmark test problems and training of the artificial neural network. The finding of our techniques shows promising performance using the family of low-discrepancy sequences over uniform random numbers. For a fair comparison, the approaches using low-discrepancy sequences for PSO and DE are compared with the other family of low-discrepancy sequences and uniform random number and depict the superior results. The experimental results show that the low-discrepancy sequences-based initialization performed exceptionally better than a uniform random number. Moreover, the outcome of our work presents a foresight on how the proposed technique profoundly impacts convergence and diversity. It is anticipated that this low-discrepancy sequence comparative simulation survey would be helpful for studying the metaheuristic algorithm in detail for the researcher.
Named Data Networking (NDN) is a promising architecture for the future Internet and it is mainly designed for efficient content delivery and retrieval. However, producer mobility support is one of the challenging problems of NDN. This paper proposes a scheme which aims to optimize the tunneling-based producer mobility solution in NDN.It does not require NDN routers to change their routing tables (Forwarding Information Base) after a producer moves. Instead, the Interest packet can be sent from a consumer to the moved producer using the tunnel. The piggybacked Data packet which is sent back to the consumer will trigger the consumer to send the following Interest packets through the optimized path to the producer. Moreover, a naming scheme is proposed so that the NDN caching function can be fully utilized. An analysis is carried out to evaluate the performance of the proposal. The results indicate that the proposed scheme reduces the network cost compared to related works and supports route optimization for enhanced producer mobility support in NDN.
Facts can be exchanged in multiple fields with the help of disease-specific ontologies. A range of diverse values can be produced by mining ontological approaches for demonstrating disease mechanisms. Alzheimer’s disease (AD) is an incurable neurological brain illness. An early diagnosis of AD can be helpful for better treatment and the prevention of brain tissue destruction. Researchers have used machine learning techniques to predict the early detection of AD. However, Alzheimer’s disorders are still underexplored in the knowledge domain. In the biomedical field, the illustration of terminologies and notions is essential. Multiple methods are adopted to represent these notions, but ontologies are the most frequent and accurate. Ontology construction is a complex and time-consuming process. The designed ontology relies on Disease Ontology (DO), which is considered the benchmark in medical practice. Ontology reasoning mechanisms can be adopted for AD identification. In this paper, a deep convolutional neural network-based approach is proposed to diagnose Alzheimer’s disease, using an AD dataset acquired from Kaggle. Machine learning-based approaches (logistic regression, gradient boosting, XGB, SGD, MLP, SVM, KNN, random forest) are also used for a fair comparison. The simulation results are generated using three strategies (default parameters, 10-cross validation, and grid search), and MLP provides superior results on a default parameter strategy with an accuracy of 92.12%. Furthermore, the deep learning-based approach convolutional neural network (CNN) achieved an accuracy of 94.61%. The experimental results indicate that the construction of ontology, with the help of deep learning knowledge, can produce better results where the robustness and scalability can be enhanced. In comparisons to other methods, the CNN results are excellent and encouraging.
In this work, a new heuristic computing design is presented with an artificial intelligence approach to exploit the models with feed-forward (FF) Gudermannian neural networks (GNN) accomplished with global search capability of genetic algorithms (GA) combined with local convergence aptitude of active-set method (ASM), i.e., FF-GNN-GAASM to solve the second kind of Lane–Emden nonlinear singular models (LE-NSM). The proposed method based on the computing intelligent Gudermannian kernel is incorporated with the hidden layer configuration of FF-GNN models of differential operatives of the LE-NSM, which are arbitrarily associated with presenting an error-based objective function that is used to optimize by the hybrid heuristics of GAASM. Three LE-NSM-based examples are numerically solved to authenticate the effectiveness, accurateness, and efficiency of the suggested FF-GNN-GAASM. The reliability of the scheme via statistical valuations is verified in order to authenticate the stability, accuracy, and convergence.
Ribonucleic acid Sequencing (RNA-Seq) analysis is particularly useful for obtaining insights into differentially expressed genes. However, it is challenging because of its high-dimensional data. Such analysis is a tool with which to find underlying patterns in data, e.g., for cancer specific biomarkers. In the past, analyses were performed on RNA-Seq data pertaining to the same cancer class as positive and negative samples, i.e., without samples of other cancer types. To perform multiple cancer type classification and to find differentially expressed genes, data for multiple cancer types need to be analyzed. Several repositories offer RNA-Seq data for various cancer types. In this paper, data from the Mendeley data repository for five cancer types are analyzed. As a first step, RNA-Seq values are converted to 2D images using normalization and zero padding. In the next step, relevant features are extracted and selected using Deep Learning (DL). In the last phase, classification is performed, and eight DL algorithms are used. Results and discussion are based on four different splitting strategies and k-fold cross validation for each DL classifier. Furthermore, a comparative analysis is performed with state of the art techniques discussed in literature. The results demonstrated that classifiers performed best at 70–30 split, and that Convolutional Neural Network (CNN) achieved the best overall results. Hence, CNN is the best DL model for classification among the eight studied DL models, and is easy to implement and simple to understand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.