BackgroundThe prevalence and clinical outcomes of heart failure with preserved left ventricular ejection fraction after acute myocardial infarction have not been well elucidated.ObjectiveTo analyze the prevalence of heart failure with preserved left ventricular ejection fraction in acute myocardial infarction and its association with mortality.MethodsPatients with acute myocardial infarction (n = 1,474) were prospectively included. Patients without heart failure (Killip score = 1), with heart failure with preserved left ventricular ejection fraction (Killip score > 1 and left ventricle ejection fraction ≥ 50%), and with systolic dysfunction (Killip score > 1 and left ventricle ejection fraction < 50%) on admission were compared. The association between systolic dysfunction with preserved left ventricular ejection fraction and in-hospital mortality was tested in adjusted models.ResultsAmong the patients included, 1,256 (85.2%) were admitted without heart failure (72% men, 67 ± 15 years), 78 (5.3%) with heart failure with preserved left ventricular ejection fraction (59% men, 76 ± 14 years), and 140 (9.5%) with systolic dysfunction (69% men, 76 ± 14 years), with mortality rates of 4.3%, 17.9%, and 27.1%, respectively (p < 0.001). Logistic regression (adjusted for sex, age, troponin, diabetes, and body mass index) demonstrated that heart failure with preserved left ventricular ejection fraction (OR 2.91; 95% CI 1.35–6.27; p = 0.006) and systolic dysfunction (OR 5.38; 95% CI 3.10 to 9.32; p < 0.001) were associated with in-hospital mortality.ConclusionOne-third of patients with acute myocardial infarction admitted with heart failure had preserved left ventricular ejection fraction. Although this subgroup exhibited more favorable outcomes than those with systolic dysfunction, this condition presented a three-fold higher risk of death than the group without heart failure. Patients with acute myocardial infarction and heart failure with preserved left ventricular ejection fraction encounter elevated short-term risk and require special attention and monitoring during hospitalization.
PurposePatients with acute myocardial infarction (AMI) and respiratory impairment may be treated with either invasive or non-invasive mechanical ventilation (MV). However, there has been little testing of non-invasive MV in the setting of AMI. Our objective was to evaluate the incidence and associated clinical outcomes of patients with AMI who were treated with non-invasive or invasive MV.MethodsThis was a retrospective observational study in which consecutive patients with AMI (n = 1610) were enrolled. The association between exclusively non-invasive MV, invasive MV and outcomes was assessed by multivariable models.ResultsMechanical ventilation was used in 293 patients (54% invasive and 46% exclusively non-invasive). In-hospital mortality rates for patients without MV, with exclusively non-invasive MV, and with invasive MV were 4.0%, 8.8%, and 39.5%, respectively (P<0.001). The median lengths of hospital stay were 6 (5.8–6.2), 13 (11.2–4.7), and 28 (18.0–37.9) days, respectively (P<0.001). Exclusively non-invasive MV was not associated with in-hospital death (adjusted HR = 0.90, 95% CI 0.40–1.99, P = 0.79). Invasive MV was strongly associated with a higher risk of in-hospital death (adjusted HR = 3.07, 95% CI 1.79–5.26, P<0.001).ConclusionsIn AMI setting, 18% of the patients required MV. Almost half of these patients were treated with exclusively non-invasive strategies with a favorable prognosis, while patients who needed to be treated invasively had a three-fold increase in the risk of death. Future prospective randomized trials are needed to compare the effectiveness of invasive and non-invasive MV for the initial approach of respiratory failure in AMI patients.
Introduction Vascular calcifi cation is a regulated process, which associates with coronary artery disease (CAD) and occurs through an increase in transcription factor expression such as RUNX2, MSX2 and alkaline phosphatase (ALP), then inducing calcium deposition. Bone morphogenetic protein-2 (BMP2) is a potent osteochondrogenic mediator, which is expressed in CAD. Endothelin-1 (ET1) and leptin have a role in regulating infl ammation and CAD. We hypothesized that BMP2, leptin or both increase ROS formation in C57BL/6 vascular smooth muscle cells (SMC), stimulating osteochondrogenic diff erentiation. We also investigated the eff ect of ET1 in SMC osteochondrogenesis. Our objectives were: to investigate ROS production in SMC after BMP2 (50 ng/ml) and/or leptin (10 ng/ml) incubation for 6 hours; and to assess osteochondrogenic gene expression and calcifi cation of SMC stimulated with BMP2, leptin or ET1 (10 nM). Methods We assessed 2-hydroxyethidium, more specifi c for superoxide, and ethidium which refl ects hydrogen peroxide through HPLC analysis in SMC after stimulation. SMC cells were incubated with these stimuli for 48 to 96 hours and RUNX2, MSX2, ALP mRNA and protein expression were assessed using qPCR and western blotting. We quantifi ed SMC calcifi cation after 14 days of stimulation through Alizarin Red staining. Results The results are shown as mean ± SD and were statistically signifi cant when pHydrogen peroxide and superoxide production increased both in BMP2 and in leptin-incubated SMC (3.77 ± 0.32 and 3.26 ± 0.26) versus control (n = 6); pBMP2 and leptin alone increased SMC calcifi cation (1.25 ± 0.08 and 1.28 ± 0.14) versus control after 14 days (n = 6); pET1 alone did not stimulate osteocondrogenic mRNA expression vs. control. Conclusion We showed that BMP2 and leptin increased ROS formation in SMC, which stimulated osteocondrogenic mRNA/protein expression to induce SMC calcifi cation. ET1 alone did not increase osteochondrogenesis in SMC. P2 Eff ects of rapid repetition of a vascular occlusion test on near-infrared spectroscopy-derived variables in healthy subjects and in critically ill patients
Introduction Cardiac surgery with cardiopulmonary bypass (CPB) is a recognized trigger of systemic inflammatory response, usually related to postoperative acute lung injury (ALI). As an attempt to dampen inflammatory response, steroids have been perioperatively administered to patients. Macrophage migration inhibitory factor (MIF), a regulator of the endotoxin receptor, is implicated in the pathogenesis of ALI. We have previously detected peak circulating levels of MIF, 6 hours post CPB. Experimental data have shown that steroids may induce MIF secretion by mononuclear cells. This study aims to correlate levels of MIF assayed 6 hours post CPB to the intensity of postoperative pulmonary dysfunction, analysing the impact of perioperative steroid administration. MethodsWe included patients submitted to cardiac surgery with CPB, electively started in the morning, performed by the same team under a standard technique except for the addition of methylprednisolone (15 mg/kg) to the CPB priming solution for patients from group MP (n = 37), but not for the remaining patients -group NS (n = 37). MIF circulating levels were assayed at the anesthesia induction, 3, 6, and 24 hours after CPB. A standard weaning protocol with fast track strategy was adopted, and indicators of organ dysfunction and therapeutic intervention were registered during the first 72 hours postoperative.Results Levels of MIF assayed 6 hours post CPB correlated directly to the postoperative duration of mechanical ventilation (P = 0.014, rho = 0.282) and inversely to PaO 2 /FiO 2 ratio (P = 0.0021, rho = -0.265). No difference in MIF levels was noted between the groups. The duration of mechanical ventilation was higher (P = 0.005) in the group MP (7.92 ± 6.0 hours), compared with the group NS (4.92 ± 3.6 hours). ConclusionCirculating levels of MIF assayed 6 hours post CPB are correlated to postoperative pulmonary performance. Immunosuppressive doses of methylprednisolone did not affect circulating levels of MIF and may be related to prolonged mechanical ventilation. P2Immediate and short-term safety of catheter-based autologous bone marrow-derived mononuclear cell transplantation into myocardium of patients with severe ischemic heart failure Background Bone marrow-derived mononuclear cell (BM-MNC) transplantation into the myocardium has been proposed as a new therapy for ischemic heart failure (HF). Successful cellular therapy for HF using myoblast transplantation has been reported previously but malignant arrhythmias (MA) were an issue. We investigated the safety of BM-MNC transplantation into the myocardium for MA.Methods A prospective study to evaluate the safety of autologous BM-MNC transplantation in patients with severe ischemic HF not amenable to myocardial revascularization was conducted. Bone marrow was harvested from the iliac crest and BM-MNCs were selected by Ficoll gradient. Hibernating myocardium areas were targeted using electromechanical mapping in catheter-based subendocardial injections (MyoStar, Cordis, Miami Lakes, FL, USA). All patien...
Sepsis, the body's response to infection, is associated with extremely high mortality rates. Why a protective mechanism turns into a deadly clinical picture is a matter of debate, and goes largely unexplained. In previous work we demonstrated that platelet-derived microparticles (MP) can induce endothelial and vascular smooth muscle cell apoptosis in septic patients through NADPH oxidasedependent superoxide release [1]. In this work we sought to create a model for ex vivo generation of septic-like MP and to identify the pathways responsible for MP free radical release and effects. Septic shock is a condition related to the generation of high amounts of thrombin, TNFα and nitrogen reactive species. Human platelets exposed to the NO donors diethylamine-NONOate (0.5 mM) and nitroprusside (2 mM) for 20 minutes generated MP similar to those found in the blood of septic shock patients. Flow cytometry and western blot analysis of those MP, like their septic counterparts, revealed exposure of the tetraspanin markers CD9, CD63, and CD81, but little phosphatidylserine. Such a membrane exposure, associated with their size, characterizes them as exosomes. Furthermore, we identified the Nox2 and p22phox NADPH oxidase subunits and the inducible isoform of NO synthase (NOS), but not the NOS I and III isoforms. On the other hand, platelets exposed to thrombin or TNFα released particles with clearly distinct characteristics, such as high phosphatidylserine and low tetraspanin. Like the septic MP, the MP obtained by NO exposure generated the superoxide radical and NO, as disclosed by lucigenin (5 µM) and coelenterazine (5 µM) chemiluminescence and by 4,5-diaminofluorescein (10 mM) and 2′,7′-dichlorofluorescein (10 mM) fluorescence. As expected, NOS inhibitors or NADPH oxidase inhibitors significantly reduced signals. In addition, endothelial cells exposed to this type of MP underwent apoptotic death, while control MP had negligible effects. NADPH oxidase as well as NOS inhibition significantly reduced apoptosis rates. Concomitant generation of NO and superoxide suggests biological effects of the highly reactive radical peroxynitrite. In fact, the peroxynitrite scavenger urate (1 mM) showed an additive effect on fluorescent signal inhibition, as well as on endothelial apoptosis rate reduction. We thus propose that platelet-derived exosomes may be another class of actors in the complex play known as 'vascular redox signaling'. In this sense, an exosome-based approach can provide novel tools for further understanding and even treating vascular dysfunction related to sepsis. Introduction The intestinal hypothesis of sepsis has been attributed to bacterial translocation (BT), and the aggravation of sepsis is related to the increased vascular permeability state that potentates the BT index. In this study we examined the BT index during sepsis with or without mesenteric lymph exclusion. Materials and methods Wistar rats (±200 g) were submitted to the BT process (E. coli R6 10 ml of 10 10 CFU/ml) and nonlethal sepsis (E. cloacae 89 2 ml ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.