Future-generation healthcare systems will be highly distributed, combining centralised hospital systems with decentralised homework rk-and environment-based monitoring and diagnostics systems. These will reduce costs and injuryrelated risks whilst both improving quality of service, and reducing the response time for diagnostics and treatments made available to patients. To make this vision possible, medical data must be accessed and shared over a variety of mediums including untrusted networks. In this paper, we present the design and initial implementation of the SERUMS tool-chain for accessing, storing, communicating and analysing highly confidential medical data in a safe, secure and privacypreserving way. In addition, we describe a data fabrication framework for generating large volumes of synthetic but realistic data, that is used in the design and evaluation of the tool-chain. We demonstrate the present version of our technique on a use case derived from the Edinburgh Cancer Centre, NHS Lothian, where information about the effects of chemotherapy treatments on cancer patients is collected from different distributed databases, analysed and adapted to improve ongoing treatments.
Chemotherapy is the main treatment commonly used for treating cancer patients. However, chemotherapy usually causes side effects some of which can be severe. The effects depend on a variety of factors including the type of drugs used, dosage, length of treatment and patient characteristics. In this paper, we use a data extraction from an oncology department in Scotland with information on treatment cycles, recorded toxicity level, and various observations concerning breast cancer patients for three years. The objective of our paper is to compare several different techniques applied to the same data set to predict the toxicity outcome of the treatment. We use a Markov model, Hidden Markov model, Random Forest and Recurrent Neural Network in our comparison. Through analysis and evaluation of the performance of these techniques, we can determine which method is more suitable in different situations to assist the medical oncologist in real-time clinical practice. We discuss the context of our work more generally and further work.
With an increasing trend in personalised healthcare provision across Europe, we need solutions to enable the secure transnational sharing of medical records, establishing granular access rights to personal patient data. Access rules can establish what should be accessible by whom for how long, and comply with collective regulatory frameworks, such as the European General Data Protection Regulation (GDPR). The challenge is to design and implement such systems integrating novel technologies like Blockchain and Data Lake to enhance security and access control. The blockchain module must deal with adequate policies and algorithms to guarantee that no data leaks occur when authorising data retrieval requests. The data lake module tackles the need for an efficient way to retrieve potential granular data from heterogeneous data sources. In this paper, we define a patient-centric authorisation approach, incorporating a structured format for composing access rules that enable secure data retrieval and automatic rules conflict checking.
This paper proposes a user-adaptable and personalized authentication paradigm for healthcare organizations, which anticipates to seamlessly reflect patients’ episodic and autobiographical memories to graphical and textual passwords aiming to improve the security strength of user-selected passwords and provide a positive user experience. We report on a longitudinal study that spanned over three years in which three public European healthcare organizations participated in order to design and evaluate the aforementioned paradigm. Three studies were conducted ( n =169) with different stakeholders: i) a verification study aiming to identify existing authentication practices of the three healthcare organizations with diverse stakeholders ( n =9); ii) a patient-centric feasibility study during which users interacted with the proposed authentication system ( n =68); and iii) a human guessing attack study focusing on vulnerabilities among people sharing common experiences within location-aware images used for graphical passwords ( n =92). Results revealed that the suggested paradigm scored high with regards to users’ likeability, perceived security, usability and trust, but more importantly it assists the creation of more secure passwords. On the downside, the suggested paradigm introduces password guessing vulnerabilities by individuals sharing common experiences with the end-users. Findings are expected to scaffold the design of more patient-centric knowledge-based authentication mechanisms within nowadays dynamic computation realms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.