Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.
Abstract:The objective of this study was to assess in vitro the antimicrobial activity of ethanolic extract of Polish propolis (EEPP) against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. The combined effect of EEPP and 10 selected antistaphylococcal drugs on S. aureus clinical cultures was also investigated. EEPP composition was analyzed by a High Performance Liquid Chromatography (HPLC) method. The flavonoid compounds identified in Polish Propolis included flavones, flavonones, flavonolols, flavonols and phenolic acids. EEPP displayed varying effectiveness against twelve S. aureus strains, with OPEN ACCESSMolecules 2013, 18 9624 minimal inhibitory concentration (MIC) within the range from 0.39 to 0.78 mg/mL, determined by broth microdilution method. The average MIC was 0.54 ± 0.22 mg/mL, while calculated MIC 50 and MIC 90 were 0.39 mg/mL and 0.78 mg/mL, respectively. The minimum bactericidal concentration (MBC) of the EEPP ranged from 0.78 to 3.13 mg/mL. The in vitro combined effect of EEPP and 10 antibacterial drugs was investigated using disk diffusion method-based assay. Addition of EEPP to cefoxitin (FOX), clindamycin (DA), tetracycline (TE), tobramycin (TOB), linezolid (LIN), trimethoprim+sulfamethoxazole (SXT), penicillin (P), erythromycin (E) regimen, yielded stronger, cumulative antimicrobial effect, against all tested S. aureus strains than EEPP and chemotherapeutics alone. In the case of ciprofloxacin (CIP) and chloramphenicol (C) no synergism with EEPP was observed.
Several studies have documented the ability of flavonoids to sensitize cancer cells to chemotherapeutics and reverse multidrug resistance by inhibition of efflux pumps (adenosine triphosphate-binding cassette transporters), apoptosis activation, and cell cycle arrest. In this study, the flavonoid rutin (quercetin 3-O-β-d-rutinoside) was investigated as chemosensitizer towards two different human epithelial breast cancer cell lines: (i) MB-MDA-231, selected as representative for triple-negative breast cancer and (ii) MCF-7 used as a well-characterized model of HER2-negative breast cancer. To assess the cytocompatibility of rutin against non-cancer cells, primary human mammary fibroblasts were used as control and non-target cells. In MDA-MB-231 cells, 20 μM rutin enhanced cytotoxicity related to cyclophosphamide and methotrexate. Rutin significantly (p < 0.05) increased the anticancer activity of both chemotherapeutics, at 24-48-72 h, and decreased the activity of the adenosine triphosphate-binding cassette transporters, namely, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Flow cytometry analysis showed 20 μM and 50 μM rutin arrested cell cycle at G2/M and G0/G1 phases, respectively, significantly promoting cell apoptosis. Rutin, via non-selective inhibition of P-gp and BCRP pumps, efficiently reverses multidrug resistance and restores chemosensitivity to cyclophosphamide and cyclophosphamide of human chemoresistant, triple-negative breast cancer cells, successfully arresting cell cycle progression. Copyright © 2017 John Wiley & Sons, Ltd.
Dental caries occurrence is caused by the colonization of oral microorganisms and accumulation of extracellular polysaccharides synthesized by Streptococcus mutans with the synergistic influence of Lactobacillus spp. bacteria. The aim of this study was to determine ex vivo the antibacterial properties of ethanol extract of propolis (EEP), collected in Poland, against the main cariogenic bacteria: salivary mutans streptococci and lactobacilli. The isolation of mutans streptococci group bacteria (MS) and Lactobacillus spp. (LB) from stimulated saliva was performed by in-office CRT bacteria dip slide test. The broth diffusion method and AlamarBlue assay were used to evaluate the antimicrobial activity of EEP, with the estimation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biochemical composition of propolis components was assessed. The mean MIC and MBC values of EEP, in concentrations ranging from 25 mg/mL to 0.025 mg/mL, for the MS and LB were found to be 1.10 mg/mL versus 0.7 mg/mL and 9.01 mg/mL versus 5.91 mg/mL, respectively. The exposure to an extract of Polish propolis affected mutans streptococci and Lactobacillus spp. viability, exhibiting an antibacterial efficacy on mutans streptococci group bacteria and lactobacilli saliva residents, while lactobacilli were more susceptible to EEP. Antibacterial measures containing propolis could be the local agents acting against cariogenic bacteria.
Synergistic interactions between commonly used antibiotics and natural bioactive compounds may exhibit therapeutic benefits in a clinical setting. Berberine, an isoquinoline-type alkaloid isolated from many kinds of medicinal plants, has proven efficacy against a broad spectrum of microorganisms. The aim of the presented work was to assess the antibacterial activity of berberine chloride in light of the effect exerted by common antibiotics on fourteen reference strains of Staphylococccus spp., and to evaluate the magnitude of interactions of berberine with these antistaphylococcal antibiotics. In our study minimum inhibitory concentrations (MIC) of berberine chloride against CoNS ranged from 16 to 512 µg/mL. The most noticeable effects were observed for S. haemolyticus ATCC 29970, S. epidermidis ATCC 12228, S. capitis subsp. capitis ATCC 35661, S. galinarium ATCC 700401, S. hominis subsp. hominis ATCC 27844, S. intermedius ATCC 29663 and S. lugdunensis ATCC 49576. The most significant synergistic effect was noticed for berberine in combination with linezolid, cefoxitin and erythromycin. The
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.