In the present contribution, we demonstrate a new approach for functionalization of colloidal nanomaterial consisting of phosphatidylcholine/cholesterol-based vesicular systems modified by FDA-approved biocompatible components, i.e., sodium cholate hydrate acting as a biosurfactant and Pluronic P123—a symmetric triblock copolymer comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks Eight novel bilosome formulations were prepared using the thin-film hydration method followed by sonication and extrusion in combination with homogenization technique. The optimization studies involving the influence of the preparation technique on the nanocarrier size (dynamic light scattering), charge (electrophoretic light scattering), morphology (transmission electron microscopy) and kinetic stability (backscattering profiles) revealed the most promising candidate for the co-loading of model active compounds of various solubility; namely, hydrophilic methylene blue and hydrophobic curcumin. The studies of the hybrid cargo encapsulation efficiency (UV-Vis spectroscopy) exhibited significant potential of the formulated bilosomes in further biomedical and pharmaceutical applications, including drug delivery, anticancer treatment or diagnostics.
In recent years, lipid-based nanosystems have emerged as a promising class of nanocarriers for encapsulating many active agents. Solid lipid nanoparticles (SLNs) provide good stability (colloidal as well as physical) and high biocompatibility. Appropriate design of the carrier structure through a selection of components and preparation methods allows us to obtain formulations with desired physicochemical parameters and biological properties. The present contribution has been carried out to investigate SLNs containing biocompatible phosphatidylcholine mixed with non-ionic surfactant Tween 60 as stabilizing agents. The internal lipid phase consisted of glyceryl monostearate was confirmed as safe for drug delivery by the Food and Drug Administration. The SLNs were fabricated by ultrasonic-nanoemulsification method. The preparation process was optimized in regard to variable parameters such as ultrasonication time and used amplitude and number of cycles. The sizes of the studied nanoparticles along with the size distribution were determined by dynamic light scattering (DLS), while shape and morphology were determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The colloidal stability was measured by a turbidimetric method. The physical state of SLNs was characterized using differential scanning calorimetry (DSC). The obtained results indicate that the proposed SLNs may provide great potential for design and preparation of novel delivery nanosystems with a variety of possible applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.