We describe the genome contents of six Protomyces spp. that are pathogenic within the typical host range of the genus and a novel Protomyces strain (SC29) that was previously isolated from the phylloplane of wild Arabidopsis thaliana (Arabidopsis), an atypical or possible alternate host. Genome-wide phylogenetic analysis defined SC29 as a distinct Protomyces sp. Analysis of gene family expansions, gene retention, and gene loss patterns among these Protomyces spp. lead us to hypothesize that SC29 may have undergone a host jump. The role of phyllosphere residency in the lifecycle of Protomyces spp. was previously unknown. Genomic changes in SC29 and all other Protomyces spp. were consistent with adaptations to the plant phylloplane. As predicted by our analysis of its mating locus, SC29 did not cause disease on Arabidopsis as a single strain, but could persist in its phylloplane, while the closely related P. inouyei does not. SC29 treated Arabidopsis exhibited enhanced immunity against Botrytis cinerea infection, associated with activation of MAPK3/6, camalexin, and SA-signalling pathways. We conclude that SC29 is a novel Protomyces sp. able to survive in the Arabidopsis phylloplane and that phylloplane residency is an important element in the lifecycle of Protomyces spp.
Yeasts are important plant-associated organisms that can modulate host immunity to either promote or prevent disease. Mechanisms of plant-yeast interactions, specifically of yeast perception by the plant innate immune system, remain unknown. Progress has been hindered by the scarcity of yeast species associated with the model plant Arabidopsis thaliana (Arabidopsis). We have previously isolated Taphrina strain M11 from wild Arabidopsis in the field. Taphrina are poorly studied dimorphic yeast-like fungi that are plant pathogens, often producing plant hormones and causing tumour-like leaf deformation symptoms on their hosts. Here we characterize the interaction of M11 with Arabidopsis. Infection of Arabidopsis with the birch pathogen T. betulina, used as a non-host control, shows early HR, enhanced ROS accumulation, and limitation of growth, demonstrating that Arabidopsis has immunity against non-adapted yeasts. M11 triggered limited cell death, an attenuated ROS response, and grew in planta, as well as subtle but clear leaf deformation symptoms, demonstrating it is pathogenic. Hormone responsive promoter-reporter analysis demonstrated activation of cytokinin signalling during infection. Mutant infection assays indicate jasmonate and ethylene were required for immunity against M11. Analysis of the Taphrina M11 genome was used to mine evidence for yeast specific PAMPs which may underlie host immune responses against yeast-like fungi.
Summary The phyllosphere is an important microbial habitat and reservoir of organisms that modify plant health. Taphrina betulina is the causal agent of birch witches' broom disease. Taphrina species are dimorphic, infecting hosts in the filamentous form and residing in the host phyllosphere as non‐infectious yeast. As such, they are expected to be found as resident yeasts on their hosts, even on healthy tissues; however, there is little experimental data supporting this supposition. With the aim of exploring the local infection ecology of T. betulina, we isolated yeasts from the phyllosphere of birch leaves, using three sample classes; infected leaves inside symptom‐bearing branches, healthy leaves from symptom‐free branches on symptom‐bearing trees and leaves from symptom‐free branches on symptom‐free trees. Isolations yielded 224 yeast strains, representing 11 taxa, including T. betulina, which was the most common isolate and was found in all sample classes, including symptom‐free samples. Genotyping revealed genetic diversity among these T. betulina isolates, with seven distinct genotypes differentiated by the markers used. Twenty‐two representative T. betulina strains were selected for further study, revealing further phenotypic differences. These findings support that T. betulina is ubiquitous on birch and that individual trees host a diversity of T. betulina strains.
The phyllosphere is a complex habitat for diverse microbial communities. Under natural conditions, multiple interactions occur between host plants and phyllosphere resident microbes, such as bacteria, oomycetes, and fungi. Our understanding of plant associated yeasts and yeast-like fungi lags behind other classes of plant-associated microbes, largely due to a lack of yeasts associated with the model plant Arabidopsis, which could be used in experimental model systems. The yeast-like fungal species Protomyces arabidopsidicola was previously isolated from the phyllosphere of healthy wild-growing Arabidopsis, identified, and characterized. Here we explore the interaction of P. arabidopsidicola with Arabidopsis and found P. arabidopsidicola strain C29 was not pathogenic on Arabidopsis, but was able to survive in its phyllosphere environment both in controlled environment chambers in the lab and under natural field conditions. Most importantly, P. arabidopsidicola exhibited an immune priming effect on Arabidopsis, which showed enhanced disease resistance when subsequently infected with the fungal pathogen Botrytis cinerea. Activation of the mitogen-activated protein kinases (MAPK), camalexin, salicylic acid, and jasmonic acid signaling pathways, but not the auxin-signaling pathway, was associated with this priming effect, as evidenced by MAPK3/MAPK6 activation and defense marker expression. These findings demonstrate Arabidopsis immune defense priming by the naturally occurring phyllosphere resident yeast species, P. arabidopsidicola, and contribute to establishing a new interaction system for probing the genetics of Arabidopsis immunity induced by resident yeast-like fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.