The increasing use of data-driven decision support systems in industry and governments is accompanied by the discovery of a plethora of bias and unfairness issues in the outputs of these systems. Multiple computer science communities, and especially machine learning, have started to tackle this problem, often developing algorithmic solutions to mitigate biases to obtain fairer outputs. However, one of the core underlying causes for unfairness is bias in training data which is not fully covered by such approaches. Especially, bias in data is not yet a central topic in data engineering and management research. We survey research on bias and unfairness in several computer science domains, distinguishing between data management publications and other domains. This covers the creation of fairness metrics, fairness identification, and mitigation methods, software engineering approaches and biases in crowdsourcing activities. We identify relevant research gaps and show which data management activities could be repurposed to handle biases and which ones might reinforce such biases. In the second part, we argue for a novel data-centered approach overcoming the limitations of current algorithmic-centered methods. This approach focuses on eliciting and enforcing fairness requirements and constraints on data that systems are trained, validated, and used on. We argue for the need to extend database management systems to handle such constraints and mitigation methods. We discuss the associated future research directions regarding algorithms, formalization, modelling, users, and systems.
Global interpretability is a vital requirement for image classification applications. Existing interpretability methods mainly explain a model behavior by identifying salient image patches, which require manual efforts from users to make sense of, and also do not typically support model validation with questions that investigate multiple visual concepts. In this paper, we introduce a scalable human-inthe-loop approach for global interpretability. Salient image areas identified by local interpretability methods are annotated with semantic concepts, which are then aggregated into a tabular representation of images to facilitate automatic statistical analysis of model behavior. We show that this approach answers interpretability needs for both model validation and exploration, and provides semantically more diverse, informative, and relevant explanations while still allowing for scalable and cost-efficient execution. CCS CONCEPTS• Information systems → Crowdsourcing; • Human-centered computing → Collaborative and social computing.
In an effort to regulate Machine Learning-driven (ML) systems, current auditing processes mostly focus on detecting harmful algorithmic biases. While these strategies have proven to be impactful, some values outlined in documents dealing with ethics in MLdriven systems are still underrepresented in auditing processes. Such unaddressed values mainly deal with contextual factors that cannot be easily quantified. In this paper, we develop a value-based assessment framework that is not limited to bias auditing and that covers prominent ethical principles for algorithmic systems. Our framework presents a circular arrangement of values with two bipolar dimensions that make common motivations and potential tensions explicit. In order to operationalize these high-level principles, values are then broken down into specific criteria and their manifestations. However, some of these value-specific criteria are mutually exclusive and require negotiation. As opposed to some other auditing frameworks that merely rely on ML researchers' and practitioners' input, we argue that it is necessary to include stakeholders that present diverse standpoints to systematically negotiate and consolidate value and criteria tensions. To that end, we map stakeholders with different insight needs, and assign tailored means for communicating value manifestations to them. We, therefore, contribute to current ML auditing practices with an assessment framework that visualizes closeness and tensions between values and we give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders. CCS CONCEPTS• General and reference → Evaluation; • Human-centered computing → Human computer interaction (HCI); • Social and professional topics → User characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.