It is well known that polylactide (PLA) is difficult to foam due to its low melt strength. Thus, many ways were described in the literature to enhance the foamability. However, the melt strength was actually determined only in a limited number of publications. In this study, the addition of chemical modifiers was used to change the rheological behavior of PLA and thereby improve its foamability in foam extrusion process. For the first time the use of dicumyl peroxide modified PLA in foam extrusion is described. Both modifications lead to a distinct increase in melt strength. Here, the highest increase was shown for the PLA modified with dicumyl peroxide. Furthermore, strain hardening was observed for PLA modified with the peroxide. Low density foams were achieved for neat and modified PLA in foam extrusion. Neat PLA showed a density of 45 kg/m3, while the peroxide modified PLA showed the highest expansion with a density reduction down to 32 kg/m3. Both modifications result in a more uniform cell structure and an improved compression strength. Here, the foamed, peroxide modified PLA showed outstanding performance compared to neat PLA foam with twice the compression strength (151 Pa) even at a 30% lower density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.