Lymphocyte-activation gene 3 (LAG-3) is an immune inhibitory receptor, with major histocompatibility complex class II (MHC-II) as a canonical ligand. However, it remains controversial whether MHC-II is solely responsible for the inhibitory function of LAG-3. Here, we demonstrate that fibrinogen-like protein 1 (FGL1), a liver-secreted protein, is a major LAG-3 functional ligand independent from MHC-II. FGL1 inhibits antigen-specific T cell activation, and ablation of FGL1 in mice promotes T cell immunity. Blockade of the FGL1-LAG-3 interaction by monoclonal antibodies stimulates tumor immunity and is therapeutic against established mouse tumors in a receptor-ligand inter-dependent manner. FGL1 is highly produced by human cancer cells, and elevated FGL1 in the plasma of cancer patients is associated with a poor prognosis and resistance to anti-PD-1/ B7-H1 therapy. Our findings reveal an immune evasion mechanism and have implications for the design of cancer immunotherapy.
Over-expression of B7-H1 (PD-L1) molecule in the tumor microenvironment (TME) is a major immune evasion mechanism in some cancer patients and antibody blockade of the B7-H1/PD-1 interaction can normalize compromised immunity without excessive side-effects. Using a genomescale T-cell activity array, we identified Siglec-15 as a critical immune suppressor. While only expressed on some myeloid cells normally, Siglec-15 is broadly upregulated on human cancer cells and tumor-infiltrating myeloid cells, and its expression is mutually exclusive to B7-H1, partially due to its induction by M-CSF and downregulation by IFN-γ. We demonstrate that Siglec-15 suppresses antigen-specific T-cell responses in vitro and in vivo. Genetic ablation or antibody blockade of Siglec-15 amplifies anti-tumor immunity in the TME and inhibits tumor Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Voltage gated sodium channels (Nav) underlie the rapid upstroke of action potentials (AP) in excitable tissues. Binding of channel interactive proteins is essential for controlling fast and long term inactivation. In the structure of the complex of the carboxy-terminal portion of Nav1.5 (CTNav1.5) with Calmodulin (CaM)–Mg2+ reported here both CaM lobes interact with the CTNav1.5. Based on the differences between this structure and that of an inactivated complex, we propose that the structure reported here represents a non-inactivated state of the CTNav, i.e., the state that is poised for activation. Electrophysiological characterization of mutants further supports the importance of the interactions identified in the structure. Isothermal titration calorimetry experiments show that CaM binds to CTNav1.5 with high affinity. The results of this study provide unique insights into the physiological activation and the pathophysiology of Nav channels.
Systemic lupus erythematosus (SLE) and discoid lupus erythematosus (DLE) of the skin are autoimmune diseases characterized by inappropriate immune responses against self-proteins; the key elements that determine disease pathogenesis and progression are largely unknown. Here, we show that mice lacking immune inhibitory receptor VISTA or programmed death-1 homolog (PD-1H KO) on a BALB/c background spontaneously develop cutaneous and systemic autoimmune diseases resembling human lupus. Cutaneous lupus lesions of PD-1H KO mice have clustering of plasmacytoid dendritic cells (pDCs) similar to human DLE. Using mass cytometry, we identified proinflammatory neutrophils as critical early immune infiltrating cells within cutaneous lupus lesions of PD-1H KO mice. We also found that PD-1H is highly expressed on immune cells in human SLE, DLE lesions, and cutaneous lesions of MRL/lpr mice. A PD-1H agonistic monoclonal antibody in MRL/lpr mice reduces cutaneous disease, autoantibodies, inflammatory cytokines, chemokines, and immune cell expansion. Furthermore, PD-1H on both T cells and myeloid cells including neutrophils and pDCs could transmit inhibitory signals, resulting in reduced activation and function, establishing PD-1H as an inhibitory receptor on T cells and myeloid cells. On the basis of these findings, we propose that PD-1H is a critical element in the pathogenesis and progression of lupus, and PD-1H activation could be effective for treatment of systemic and cutaneous lupus.
The Nudix hydrolase superfamily, characterized by the presence of the signature sequence GX5EX7REUXEEXGU (where U is I, L, or V), is a well studied family in which relations have been established between primary sequence and substrate specificity for many members. For example, enzymes that hydrolyze the diphosphate linkage of ADP-ribose are characterized by having a proline 15 amino acids C-terminal of the Nudix signature sequence. GDPMK is a Nudix enzyme that conserves this characteristic proline but uses GDP-mannose as the preferred substrate. By investigating the structure of the GDPMK alone, bound to magnesium, and bound to substrate, the structural basis for this divergent substrate specificity and a new rule was identified by which ADP-ribose pyrophosphatases can be distinguished from Purine-DP-mannose pyrophosphatases from primary sequence alone. Kinetic and mutagenesis studies showed that GDPMK hydrolysis does not rely on a single glutamate as the catalytic base. Instead, catalysis is dependent on residues that coordinate the magnesium ions and residues that position the substrate properly for catalysis. GDPMK was thought to play a role in biofilm formation due to its upregulation in response to RcsC signalling; however, GDPMK knockout strains show no defect in their capacity of forming biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.