Plasmonic materials
have optical cross sections that exceed by
10-fold their geometric sizes, making them uniquely suitable to convert
light into electrical charges. Harvesting plasmon-generated hot carriers
is of interest for the broad fields of photovoltaics and photocatalysis;
however, their direct utilization is limited by their ultrafast thermalization
in metals. To prolong the lifetime of hot carriers, one can place
acceptor materials, such as semiconductors, in direct contact with
the plasmonic system. Herein, we report the effect of operating temperature
on hot electron generation and transfer to a suitable semiconductor.
We found that an increase in the operation temperature improves hot
electron harvesting in a plasmonic semiconductor hybrid system, contrasting
what is observed on photodriven processes in nonplasmonic systems.
The effect appears to be related to an enhancement in hot carrier
generation due to phonon coupling. This discovery provides a new strategy
for optimization of photodriven energy production and chemical synthesis.
It has been suggested in the literature that keto‐to‐enol tautomerization plays a vital role for lignin fragmentation under mild conditions. On the other hand, previous modelling has shown that the adsorbed keto form is more stable than enol on the Pd(111) catalyst. The current density functional theory study of lignin model molecules shows that, in the gas‐phase, keto is more stable than enol, but on the Pd surface, we find enol conformers that are at least as stable as keto. This supports the experimental result that the favourable reaction pathway for lignin depolymerization involves keto‐enol tautomerization. An energy decomposition analysis gives insights concerning the origin of the fine energy balance between the keto and enol forms, where the molecule–surface interaction (−7 eV) and the molecular strain energy (+3 eV) are the main contributors to the adsorption energy.
We evaluate the qualitative and quantitative accuracy of various flavors of density functionals with and without accounting for dispersion corrections. Our test system is nickel in the form of bulk, surfaces, and nanoparticles for which we compute structural properties, bulk cohesive energies, surface energies, and work functions and compare to experimental data. We find that the inclusion of any dispersion, either by an a posteriori correction or by a self-consistent treatment by explicitly computing the nonlocal correlation contribution to the total energy, has a significant effect on the calculated properties and improves the quantitative comparison to experiments. Besides the quantitative agreement, we also investigate qualitative features by comparing Wulff shapes of metal nanoparticles as obtained using the different density functionals. We find that all tested functionals predict similar Wulff shapes for nickel nanoparticles but still have some small differences. These results show that the relative energies calculated using the semilocal GGA and meta-GGA functionals, with and without dispersion, are quite similar. Our findings can also be generalized to other systems when rationalized in terms of the computed reduced density gradients. We find that the distribution of reduced density gradients in a material is correlated to the steepness of the exchange enhancement factor and propose that this information can be used as a quantitative guide when it comes to picking the most appropriate density functional for specific target systems as well as when it comes to extrapolating DFT data to predict experiments.
The development of new conductive polymers nowadays is one of the most important technological areas in materials design. Computational investigation of desired properties in conductive polymers could save financial resources and time, but it is important to choose the methodology that produces good results comparing to experimental results. To verify the prediction of second hyperpolarizability (γ) in oligomers of Trans-Polyacetylene (TPA) by theoretical calculations, a series of semi-empirical, Hartree-Fock (HF), and Density Functional Theory (DFT) calculations were performed and analysed through linear fitting statistical analysis to investigate the accuracy of such theoretical predictions in comparison to the experimental ones. The results showed that HF and DFT methodologies do not describe γ with good accuracy, but the use of diffuse and polarizability functions in HF methodology provided better results than 3-21G and 6-31G functions. It was concluded that RM1 methodology better agrees with γ experimental results for TPA oligomers, and linear fitting statistical analysis is a useful tool to compare experimental and theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.