In the petroleum industry during a catalytic cracking process, the used zeolitic catalyst becomes waste. this article investigated the sorption capacities of ammonium ions from aqueous solutions onto the previously mentioned zeolitic waste by batch experiments. Three types of zeolitic waste were used: unmodified zeolitic waste with two different particle size distributions and H 2 o 2-modified zeolitic waste. Several techniques, including X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) multilayer adsorption theory measurements, and X-ray fluorescence analysis (XRF) were used to demonstrate experimentally that the zeolitic waste could be used as a sorbent for the water decontamination of NH 4 + ions. The morphology of zeolitic waste investigated by scanning electron microscopy (SEM) revealed particles with a spherical shape. The nitrogen adsorption-desorption isotherms showed an isotherm mixture of types I (pure microporous) and IV (mesoporous). This suggested that the investigated zeolitic materials were mesoporous (4.84 nm) and microporous (0.852 nm), as well as containing slit/cylindric pores, according to a quench solid density functional theory (QSDFT) adsorption branch model. Zeolitic waste from the oil industry showed good NH 4 + sorption properties (removal efficiency of 72%), thus becoming a potential adsorbent to be used in the treatment of contaminated aqueous effluents polluted with ammonium ions. Simultaneous waste and water decontamination can be achieved, providing a new tool and enhanced capabilities for environmental remediation. Ammonium (NH 4 +) is one of the common form of reactive nitrogen in wastewater 1 , and its contamination in fish causes serious health problems due to its high toxicity. The technologies for ammonia removal from wastewater are based on physicochemical and biochemical treatment methods 2. One of these treatment methods is adsorption, which is a low-cost process. Different adsorbents, such as wheat straw biochars, pine sawdust or zeolites, can be effective in adsorbing ammonium in wastewater 3-13. Yang et al. 4 used some natural adsorbents such as pine sawdust and wheat straw biochars for the ammonium removal in wastewater. It was concluded that biochars can be efficient absorbents for NH4 + removal from aqueous solutions. Tian et al. 5 synthesized a new sorbent using modified coal cinders and zeolite powders. This sorbent has been shown to be a good material for the removal of ammonia nitrogen. The removal efficiency of ammonia nitrogen was 67.3% and 71.3%. The inflow concentrations of ammonia nitrogen were obtained under the experimental conditions where chemical oxygen demand under a water flow of 10 L/h. Yin et al. 6 used NaCl-modified clinoptilolite as adsorbent for the nitrogen removal. Results in a current batch study provided that the maximum ammonium sorption capacity of clinoptilolite was in the range of 6.64 to 7.27 mg. N/g. The work reported by Sánchez-Hernández et al. 7 evaluated the use of NaP1 ze...
Fluid catalytic cracking (FCC) catalysts, used in the petroleum industry, are sources of zeolitic by-products. These by-products are often used as sorbents for the removal of ammonium ions from wastewater. After a period of use, the zeolitic by-product loses its sorption properties and is no longer effective. The problem is the use of zeolitic by-product with ammonium ions. In this study, a zeolitic by-product containing ammonium ions and high contents of active SiO2 and Al2O3 was used as a supplementary cementitious material (SCM). Cement pastes containing 0.5%, 1%, 3%, 5%, and 10% of the by-product were prepared, and the compressive strength and density of the pastes were evaluated. Incorporation of the zeolitic by-product increased the cement strength by 17% and 32% after 7 and 28 days of hydration, respectively. Thus, incorporation of the zeolitic by-product with ammonium ions as an SCM has a complex effect on an ordinary Portland cement (OPC) system. Ammonium chloride accelerated cement setting after 7 days of hydration, and the pozzolanic reaction positively affected strength development after 28 days of hydration. The reaction products caused the cement to have a compact microstructure. The zeolitic by-product containing absorbed ammonium ions can be successfully reused to replace ordinary Portland cement in cement pastes.
In this study, straetlingite-based sorbents were used for NH4+ ion removal from a synthetic aqueous solution and from the wastewater of an open recirculation African catfish farming system. This study was performed using column experiments with four different filtration rates (2, 5, 10, and 15 mL/min). It was determined that breakthrough points and sorption capacity could be affected by several parameters such as flow rate and mineral composition of sorption materials. In the synthetic aqueous solution, NH4+ removal reached the highest sorption capacity, i.e., 0.341 mg/g with the S30 sorbent at a filtration rate of 10 mL/min and an initial concentration of 10 mg/L of NH4+ ions. It is important to emphasize that, in this case, the Ce/C0 ratio of 0.9 was not reached after 420 min of sorption. It was also determined that the NH4+ sorption capacity was influenced by phosphorus. In the wastewater, the NH4+ sorption capacity was almost seven times lower than that in the synthetic aqueous solution. However, it should be highlighted that the P sorption capacity reached 0.512 mg/g. According to these results, it can be concluded that straetlingite-based sorbents can be used for NH4+ ion removal from a synthetic aqueous solution, as well as for both NH4+ and P removal from industrial wastewater. In the wastewater, a significantly higher sorption capacity of the investigated sorbents was detected for P than for NH4+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.