Leptosphaeria maculans, the causal agent of stem canker of oilseed rape (Brassica napus), develops gene-for-gene interactions with oilseed rape, and four L. maculans avirulence (AVR) genes (AvrLm1, AvrLm2, AvrLm4, and alm1) were previously genetically characterized. Based on the analysis of progeny of numerous in vitro crosses between L. maculans isolates showing either already characterized or new differential interactions, this work aims to provide an overview of the AVR genes that may specify incompatibility toward B. napus and the related species B. juncea and B. rapa. Two novel differential interactions were thus identified between L. maculans and B. napus genotypes, one of them corresponding to a complete resistance to European races of L. maculans. In both cases, a single gene control of avirulence was established (genes AvrLm3 and AvrLm7). Similarly, a single gene control of avirulence toward a B. rapa genotype, also resistant to European L. maculans isolates, was demonstrated (gene AvrLm8). Finally, a digenic control of avirulence toward B. juncea was established (genes AvrLm5 and AvrLm6). Linkage analyses demonstrated that at least four unlinked L. maculans genomic regions, including at least one AVR gene cluster (AvrLm1-AvrLm2-AvrLm6), are involved in host specificity. The AvrLm3-AvrLm4-AvrLm7 region may correspond either to a second AVR gene cluster or to a multiallelic AVR gene.
Leptosphaeria maculans causes blackleg of oilseed rape. Gene-for-gene interactions between race PG3 and Brassica napus cv. Quinta were related to interaction between the fungal avirulence (Avr) gene AvrLm1 and the corresponding resistance gene Rlm1. AvrLm1 isolates were aviru-lent on cvs. Doublol, Vivol, Columbus, and Capitol, and no recombinant phenotypes were observed in the progeny of two AvrLm1 x avrLm1 crosses, suggesting that all of these cultivars may possess Rlm1 or genes displaying the same recognition spectrum, or that a cluster of Avr genes is present at the Avrlm1 locus. In one cross, segregation distortion was observed at the AvrLm1 locus that could be explained by interaction between AvrLm1 and one unlinked deleterious gene, termed Del1. Incompatibility toward cvs. Jet Neuf and Darmor.bzh was governed by a single gene, unlinked to AvrLm1 or Del1. This avirulence gene was termed AvrLm4. Preliminary plant genetic analysis suggested the occurrence of a corresponding dominant resistance gene, termed Rlm4, present in the Quinta line analyzed and linked to Rlm1.
Summary
The outcome of plant–microbe interactions is determined by a fine‐tuned molecular interplay between the two partners. Little is currently known about the molecular dialogue between plant roots and filamentous pathogens. We describe here a new pathosystem for the analysis of molecular mechanisms occurring during the establishment of a compatible interaction between Arabidopsis thaliana roots and a root‐infecting oomycete.
We performed cytological and genetic analyses of root infection during the compatible interaction between A. thaliana and Phytophthora parasitica.
Phytophthora parasitica uses appressoria to penetrate A. thaliana roots. Initial biotrophic growth is accompanied by the formation of haustoria, and is followed by a necrotrophic lifestyle. Arabidopsis thaliana mutants with impaired salicylic acid (SA), jasmonic acid (JA) or ethylene (ET) signaling pathways are more susceptible than the wild‐type to infection. The salicylate‐ and jasmonate‐dependent signaling pathways are concertedly activated when P. parasitica penetrates the roots, but are downregulated during invasive growth, when ethylene‐mediated signaling predominates.
Thus, defense responses in A. thaliana roots are triggered immediately on contact with P. parasitica. Our findings suggest that the pattern of early defense mechanism activation differs between roots and leaves.
Biotrophic filamentous plant pathogens frequently establish intimate contact with host cells through intracellular feeding structures called haustoria. To form and maintain these structures, pathogens must avoid or suppress defence responses and reprogramme the host cell. We used Arabidopsis whole-genome microarrays to characterize genetic programmes that are deregulated during infection by the biotrophic' oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis. Marked differences were observed between early and late stages of infection, but a gene encoding a putative leucine-rich repeat receptor-like kinase (LRR-RLK) was constantly up-regulated. We investigated the evolutionary history of this gene and noticed it being one of the first to have emerged from a common ancestral gene that gave rise to a cluster of 11 genes through duplications. The encoded LRR-RLKs harbour an extracellular malectin-like (ML) domain in addition to a short stretch of leucine-rich repeats, and are thus similar to proteins from the symbiosis receptor-like kinase family. Detailed expression analysis showed that the pathogenresponsive gene was locally expressed in cells surrounding the oomycete. A knockout mutant showed reduced downy mildew infection, but susceptibility was fully restored through complementation of the mutation, suggesting that the (ML-)LRR-RLK contributes to disease. According to the mutant phenotype, we denominated it Impaired Oomycete Susceptibility 1 (IOS1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.