It is firmly established that plants respond to biotic and abiotic stimuli by emitting volatile organic compounds (VOCs). These VOCs provide information on the physiological status of the emitter plant and are available for detection by the whole community. In the context of plant-plant interactions, research has focused mostly on defence-related responses of receiver plants. However, responses may span hormone signalling, both primary and secondary metabolism and ultimately affect plant fitness. Here we present a synthesis of plant-plant interactions focusing on the effects of VOC exposure on receiver plants. An overview of the important chemical cues, uptake and conversion of VOCs and the adsorption of VOCs to plant surfaces is presented. This is followed by review of the substantial VOC-induced changes to receiver plants affecting both primary and secondary metabolism and influencing plant growth and reproduction. Further research should consider whole plant responses for effective evaluation of mechanisms and fitness consequences of receiver plant exposure to VOCs.
Concentrations of tropospheric ozone have more than doubled in the Northern Hemisphere since pre-industrial times. Plant responses to single abiotic or biotic stresses, such as ozone exposure and herbivore-feeding, have received substantial attention, especially for cultivated plants. Modern cultivated plants have been subjected to selective breeding that has altered plant chemical defences. To understand how ozone might affect plant responses to herbivore-feeding in wild and cultivated plants, we studied the volatile emissions of brassicaceous plants after exposure to ambient (~15 ppb) or elevated ozone (80 ppb), with and without Plutella xylostella larvae-feeding. Results indicated that most of the wild and cultivated plants increased volatile emissions in response to herbivore-feeding. Ozone alone had a weaker and less consistent effect on volatile emissions, but appeared to have a greater effect on wild plants than cultivated plants. This study highlights that closely related species of the Brassicaceae have variable responses to ozone and herbivore-feeding stresses and indicates that the effect of ozone may be stronger in wild than cultivated plants. Further studies should investigate the mechanisms by which elevated ozone modulates plant volatile emissions in conjunction with biotic stressors.
Exogenous application of the plant hormone methyl jasmonate (MeJA) can trigger induced plant defenses against herbivores, and has been shown to provide protection against insect herbivory in conifer seedlings. Other methods, such as mechanical damage to seedlings, can also induce plant defenses, yet few have been compared to MeJA and most studies lack subsequent herbivory feeding tests. We conducted two lab experiments to: (1) compare the efficacy of MeJA to mechanical damage treatments that could also induce seedling resistance, (2) examine if subsequent insect damage differs depending on the time since induction treatments occurred, and (3) assess if these induction methods affect plant growth. We compared Scots pine (Pinus sylvestris) seedlings sprayed with MeJA (10 or 15 mM) to seedlings subjected to four different mechanical bark damage treatments (two different bark wound sizes, needle-piercing damage, root damage) and previous pine weevil (Hylobius abietis) damage as a reference treatment. The seedlings were exposed to pine weevils 12 or 32 days after treatments (early and late exposure, hereafter), and resistance was measured as the amount of damage received by plants. At early exposure, seedlings treated with needle-piercing damage received significantly more subsequent pine weevil feeding damage than those treated with MeJA. Seedlings treated with MeJA and needle-piercing damage received 84% less and 250% more pine weevil feeding, respectively, relative to control seedlings. The other treatments did not differ statistically from control or MeJA in terms of subsequent pine weevil damage. For the late exposure group, plants in all induction treatments tended to receive less pine weevil feeding (yet this was not statistically significant) compared to control seedlings. On the other hand, MeJA significantly slowed down seedling growth relative to control and all other induction treatments. Overall, the mechanical damage treatments appeared to have no or variable effects on seedling resistance. One of the treatments, needle-piercing damage, actually increased pine weevil feeding at early exposure. These results therefore suggest that mechanical damage shows little potential as a plant protection measure to reduce feeding by a bark-chewing insect.
Purpose of Review Approximately 40 years ago, key papers indicating that volatile chemicals released by damaged plants elicited defense-related changes in their neighbors, brought prominence to the idea of plant communication. These studies were conducted with several tree species and the phenomenon observed was dubbed “talking trees.” Today there is a wealth of evidence supporting the idea that plants can send and receive information both above and belowground. However, while early reports of plant-plant communication concerned trees, the literature is now heavily biased towards herbaceous plants. The purpose of this review is to highlight recent research on tree-tree communication with an emphasis on synthesizing knowledge on the ecological relevance of the process. Recent Findings Aboveground, information is often provided in the form of biogenic volatile organic compounds (VOCs), which are released by both undamaged and damaged plants. The blends of VOCs released by plants provide information on their physiological condition. Belowground, information is conveyed through mycorrhizal networks and via VOCs and chemical exudates released into the rhizosphere. Recent findings have indicated a sophistication to tree communication with more effective VOC-mediated interactions between trees of the same versus a different genotype, kin-group, or chemotype. Moreover, common mycorrhizal networks have been shown to convey stress-related signals in intra- and interspecific associations. Together these two forms of communication represent “wireless” and “wired” channels with significance to facilitating plant resistance to herbivores. Summary In this review, we examine tree-tree communication with a focus on research in natural forest ecosystems. We particularly address the effects of tree-tree communication on interactions with herbivorous insects. Aboveground and belowground interactions are both reviewed and suggested implications for forest management and future research are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.