Mutations in the human Crumbs homologue-1 (CRB1) gene cause retinal diseases including Leber's congenital amaurosis (LCA) and retinitis pigmentosa type 12. The CRB1 transmembrane protein localizes at a subapical region (SAR) above intercellular adherens junctions between photoreceptor and Müller glia (MG) cells. We demonstrate that the Crb1-/- phenotype, as shown in Crb1-/- mice, is accelerated and intensified in primary retina cultures. Immuno-electron microscopy showed strong Crb1 immunoreactivity at the SAR in MG cells but barely in photoreceptor cells, whereas Crb2, Crb3, Patj, Pals1 and Mupp1 were present in both cell types. Human CRB1, introduced in MG cells in Crb1-/- primary retinas, was targeted to the SAR. RNA interference-induced silencing of the Crb1-interacting-protein Pals1 (protein associated with Lin7; Mpp5) in MG cells resulted in loss of Crb1, Crb2, Mupp1 and Veli3 protein localization and partial loss of Crb3. We conclude that Pals1 is required for correct localization of Crb family members and its interactors at the SAR of polarized MG cells.
Mutations in the Crumbs homologue 1 (CRB1) gene cause autosomal recessive retinitis pigmentosa (arRP) and autosomal Leber congenital amaurosis (arLCA). The crumbs (crb) gene was originally identified in Drosophila and encodes a large transmembrane protein required for maintenance of apico-basal cell polarity and adherens junction in embryonic epithelia. Human CRB1 and its two paralogues, CRB2 and CRB3, are highly conserved throughout the animal kingdom. Both in Drosophila and in vertebrates, the short intracellular domain of Crb/CRB organizes an evolutionary conserved protein scaffold. Several lines of evidence, obtained both in Drosophila and in mouse, show that loss-of-function of crb/CRB1 or some of its intracellular interactors lead to morphological defects and light-induced degeneration of photoreceptor cells, features comparable to those observed in patients lacking CRB1 function. In this review, we describe how understanding Crb complex function in fly and vertebrate retina enhances our knowledge of basic cell biological processes and might lead to new therapeutic approaches for patients affected with retinal dystrophies caused by mutations in the CRB1 gene.
Cortactin is a filamentous actin (F-actin)-binding protein that regulates cytoskeletal dynamics by activating the Arp2/3 complex; it binds to F-actin by means of six N-terminal "cortactin repeats". Gene amplification of 11q13 and consequent overexpression of cortactin in several human cancers is associated with lymph node metastasis. Overexpression as well as tyrosine phosphorylation of cortactin has been reported to enhance cell migration, invasion, and metastasis. Here we report the identification of two alternative splice variants (SV1 and SV2) that affect the cortactin repeats: SV1-cortactin lacks the 6th repeat (exon 11), whereas SV2-cortactin lacks the 5th and 6th repeats (exons 10 and 11). SV-1 cortactin is found co-expressed with wild type (wt)-cortactin in all tissues and cell lines examined, whereas the SV2 isoform is much less abundant. SV1-cortactin binds F-actin and promotes Arp2/3-mediated actin polymerization equally well as wt-cortactin, whereas SV2-cortactin shows reduced F-actin binding and polymerization. Alternative splicing of cortactin does not affect its subcellular localization or growth factor-induced tyrosine phosphorylation. However, cells that overexpress SV1-or SV2-cortactin show significantly reduced cell migration when compared with wt-cortactin-overexpressing cells. Thus, in addition to overexpression and tyrosine phosphorylation, alternative splicing of the F-actin binding domain of cortactin is a new mechanism by which cortactin influences cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.