Today's health care is difficult to imagine without the possibility to objectively measure various physiological parameters related to patients' symptoms (from temperature through blood pressure to complex tomographic procedures). Psychiatric care remains a notable exception that heavily relies on patient interviews and self-assessment. This is due to the fact that mental illnesses manifest themselves mainly in the way patients behave throughout their daily life and, until recently there were no "behavior measurement devices." This is now changing with the progress in wearable activity recognition and sensor enabled smartphones. In this paper, we introduce a system, which, based on smartphone-sensing is able to recognize depressive and manic states and detect state changes of patients suffering from bipolar disorder. Drawing upon a real-life dataset of ten patients, recorded over a time period of 12 weeks (in total over 800 days of data tracing 17 state changes) by four different sensing modalities, we could extract features corresponding to all disease-relevant aspects in behavior. Using these features, we gain recognition accuracies of 76% by fusing all sensor modalities and state change detection precision and recall of over 97%. This paper furthermore outlines the applicability of this system in the physician-patient relations in order to facilitate the life and treatment of bipolar patients.
Mental disorders can have a significant, negative impact on sufferers' lives, as well as on their friends and family, healthcare systems and other parts of society. Approximately 25 % of all people in Europe and the USA experience a mental disorder at least once in their lifetime. Currently, monitoring mental disorders relies on subjective clinical self-reporting rating scales, which were developed more than 50 years ago. In this paper, we discuss how mobile phones can support the treatment of mental disorders by (1) implementing human-computer interfaces to support therapy and (2) collecting relevant data from patients' daily lives to monitor the current state and development of their mental disorders. Concerning the first point, we review various systems that utilize mobile phones for the treatment of mental disorders. We also evaluate how their core design features and dimensions can be applied in other, similar systems. Concerning the second point, we highlight the feasibility of using mobile phones to collect comprehensive data including voice data, motion and location information. Data mining methods are also reviewed and discussed. Based on the presented studies, we summarize advantages and drawbacks of the most promising mobile phone technologies for detecting mood disorders like depression or bipolar disorder. Finally, we discuss practical implementation details, legal issues and business models for the introduction of mobile phones as medical devices.
Mobile computing is changing the landscape of clinical monitoring and self-monitoring. One of the major impacts will be in healthcare, where increase in number of sensing modalities is providing more and more information on the state of overall wellbeing, behaviour and health. There are numerous applications of mobile computing that range from wellbeing applications, such as physical fitness, stress or burnout up to applications that target mental disorders including bipolar disorder. Use of information provided by mobile computing devices can track the state of the subjects and also allow for experience sampling in order to gather subjective information. This paper reports on the results obtained from a medical trial with monitoring of bipolar disorder patients and how the episodes of the diseases correlate to the analysis of the data sampled from mobile phone acting as a monitoring device.
We describe a real life study of the use of smart phone based sensors for state monitoring of bipolar disorder (manic-depressive disorder). The study was conducted with 10 patients in a rural area of Austria under the supervision of a local psychiatric hospital. It shows initial evidence that relatively simple features derived from location, motion and phone call patterns are a good indication of state transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.