The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1-5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
The family of NADPH oxidase (NOX) genes produces reactive oxygen species (ROS) pivotal for both cell signalling and host defense. To investigate whether NOX and NOX accessory gene expression might be a factor common to specific human tumour types, this study measured the expression levels of NOX genes 1-5, dual oxidase 1 and 2, as well as those of NOX accessory genes NoxO1, NoxA1, p47 phox , p67 phox and p22 phox in human cancer cell lines and in tumour and adjacent normal tissue pairs by quantitative, real-time RT-PCR. The results demonstrate tumour-specific patterns of NOX gene expression that will inform further studies of the role of NOX activity in tumour cell invasion, growth factor response and proliferative potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.