Within the field of textile construction, textiles are traditionally used either as decorative elements in interior design or as flat textiles in tensile-stressed lightweight constructions (roofs, temporary buildings, etc.). Technical textiles made of glass or carbon fibers are now also used as steel substitutes in concrete construction. There, flat textiles are also used as lost formwork or shaping semi-finished products. Applications for 3D textiles and in particular spacer textiles have so far only been investigated as part of multilayer constructions in combination with other elements. Otherwise, there are no studies for their application potential in the roof and wall areas of buildings and as a starting structure for opaque and translucent components. The two research projects presented here, "ReFaTex" (adjustable spacer fabrics for solar shading devices) and "ge3TEX" (warp-knitted, woven and foamed spacer fabrics) illustrate for one thing the possibilities for using 3D textiles for the construction of movable and translucently variable solar protection elements in the building envelope. Otherwise they show how 3D textiles in combination with foamed materials can be transformed into opaque, lightweight, self-supporting and insulated wall and ceiling components in the building envelope. Both projects are designed experimentally and iteratively. The results are compared in a qualifying manner, the aim being not to quantify individual measured variables but to explore the development potential of textile construction for sustainable future components and to realize the first demonstrators. In the ReFaTex project, 1:1 demonstrators with different movement mechanisms for controlling the incidence of light were realized. In the ge3TEX project, 1:1 demonstrators made of three different textile and foam materials were added to form new single-origin composite components for ceiling elements. Both projects show the great application potential for 3D textiles in the construction industry.
Das ROLEX LEARNING CENTER in Lausanne besticht nicht nur durch sein ungewöhnliches architektonisches Konzept, sondern bedeutete für alle Planungsbeteiligten und insbesondere für die Tragwerksplaner eine große Herausforderung. Gefragt war im architektonischen Wettbewerb, der im Jahr 2005 durchgeführt wurde, der Entwurf eines Gebäudes mit ausreichend Platz für eine Bibliothek, Studentenarbeitsplätze und kulturelle Aktivitäten, das gleichzeitig den neuen zentralen Eingang der EPFL repräsentieren sollte. Die Architekten Kazujo Sejima und Ryue Nishizawa (SANAA) entwarfen hierfür eine architektonische Landschaft, die eine natürliche Trennung der verschiedenen Nutzungszonen durch Täler und Hügel an Stelle von Wänden und Decken vorsah. Der vorliegende Bericht beschäftigt sich mit dem Tragwerksentwurf im Allgemeinen, mit der Formfindung der Schalen sowie der Entwicklung ihres Tragwerkskonzeptes, mit der design‐statischen Berechnung des Tragwerks, insbesondere der Schalen und ihrer Ausführungsplanung.
This paper outlines a teaching methodology that utilizes folding as a form-generator and introduces an interdisciplinary student team to digital tools and research-through-design based methods. At the heart of the project is the design of folded plate structures, which can be manufactured from 10mm cardboard material by using only 2D-CNC miter cutting. We present our computational workflow from conception to completion for two 1:1 scale demonstrators. Lastly, we identify aspects of the project that can be applied for other computational design teaching formats.
Für die Architektur war die Disziplin der Tragwerksplanung schon immer von großer Bedeutung. Architekten wie Antoni Gaudi, Félix Candela oder Frei Otto haben die Architektur und besonders die Tragwerksplanung durch ihre außergewöhnliche Sichtweise auf Strukturen nachhaltig beeinflusst. In der Vergangenheit stellte das Entwickeln besonderer Tragwerke oft einen langwierigen Bearbeitungsprozess dar. Eine Vielzahl an Versuchen anhand von Modellen wurde in der Regel durch unzählige rechnerische Nachweise begleitet. Das digitale Zeitalter lässt die Tragwerksplanung wesentlich exakter und schneller komplexe Formen bis zur Ausführung entwickeln. Mittels iterativer oder evolutionärer Generierungsprozesse entstehen heute höchst anspruchsvolle Tragsysteme, die Grundlage solcher Prozesse bildet zunächst die konkrete Definition der Anforderungen an das Tragwerk. Die daraus entwickelten Parameter lassen den Computer in kürzester Zeit eine Vielzahl an Varianten generieren. Mit einer individuellen Gewichtung dieser Parameter steuert der Tragwerksplaner den Generierungsprozess. Dieser Planungsprozess lässt sich mit einem herkömmlichen Planungsablauf, wie er in den Leistungsbildern der HOAI beschrieben wird, nicht mehr vereinbaren. Während in den klassischen Planungsphasen eine schrittweise Erhöhung der Detailtiefe definiert ist, macht das frühe Finden und Wichten der für einen komplexen Gesamtprozess relevanten Parameter eine wesentlich exaktere Detaillierung bereits in der Vorplanung nötig. Design process of complex structures – Interaction between architecture and structure The discipline of structural engineering has always been of great importance for architecture. Architects like Antoni Gaudi, Felix Candela or Frei Otto have strongly influenced the architecture and particularly the structural design by their extraordinary view regarding structures. In the past, the development of special structures often required a long editing process. Numerous tests using models were usually accompanied by countless calculation proofs. The digital age allows developing complex shapes until implementation far more precise and faster. Using iterative or evolutionary generation processes, today highly sophisticated support systems come into being. The basis of such processes is firstly the precise definition of the requirements for the structure. The resulting parameters enable the computer to generate a multitude of variations in very short time. With an individual weight functioning of these parameters, the structural engineer controls the generation process. This design process is not compatible anymore with a conventional design process as it is described in the scope of work of the German HOAI. During classical design phases a gradual increase of the level of detail is defined. Whereas the early finding and weight functioning of the relevant parameters, which are necessary for the planning in an overall complex process, requires already a more precise detailing in the pre‐design phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.