The novel conjugate 1, featuring two l-tyrosinato residues axially coordinated to the tin centre of a Sn(iv)-tetraphenylporphyrin, is reported as the first example of a supramolecular dyad for photochemical PCET. It is noteworthy that the excitation of 1 in the presence of a suitable base is followed by photoinduced PCET leading to a radical pair state with a surprisingly long lifetime.
A series of four arrays made of a central Sn(IV) porphyrin as scaffold axially connected, via carboxylate functions, to two free-base porphyrins has been prepared and fully characterized. Three arrays in the series feature the same free-base unit and alternative tin-porphyrin macrocycles, and one consists of a second type of free-base and one chosen metallo-porphyrin. A thorough photophysical investigation has been performed on all arrays by means of time-resolved emission and absorption techniques. Specific focus has been given at identifying how structural modifications of the free-base and tin-porphyrin partners and/or variation of the solvent polarity can effectively translate into distinct photophysical behaviors. In particular, for systems SnTPP(Fb)2 (1) and SnOEP(Fb)2 (2), an ultrafast energy transfer process from the excited Sn(IV) porphyrin to the free-base unit occurs with unitary efficiency. For derivative SnTPP(FbR)2 (3), the change of solvent from dichloromethane to toluene is accompanied by a neat change in the intercomponent quenching mechanism, from photoinduced electron transfer to energy transfer, upon excitation of the Sn(IV) porphyrin unit. Finally, for array SnTpFP(Fb)2 (4), an ultrafast electron transfer quenching of both chromophores is detected in all solvents. This work provides a general outline, accompanied by clear experimental support, on possible ways to achieve a systematic fine-tuning of the quenching mechanism (from energy to electron transfer) of Sn(IV) multiporphyrin arrays.
Proton-coupled electron transfer (PCET) plays a key role in many biological processes, and a thorough comprehension of its subtle mechanistic complexity requires the synthesis and characterization of suitable artificial systems capable of mimicking this fundamental, elementary step. Herein, we report on a detailed photophysical investigation of conjugate 1, based on a tin(IV) tetraphenylporphyrin (SnTPP) chromophore bound to two l-tyrosinato amino acids, in CH2Cl2 in combination with organic bases of different strength and the preparation of a novel conjugate 3, based on a tin(IV) octaethylporphyrin (SnOEP) in place of the tetraphenyl analogue, and its photophysical characterization in CH2Cl2 in the presence of pyrrolidine. In the case of compound 1 with all bases examined, quenching of both the singlet and triplet excited states is observed and attributed to the occurrence of concerted proton–electron transfer (CPET). Rates and quenching yields decrease with the strength of the base used, consistent with the decrease of the driving force for the CPET process. Conjugate 3 with pyrrolidine is quenched only at the triplet level by CPET, albeit with slower rates than its parent compound 1, ascribable to the smaller driving force as a result of SnOEP being more difficult to reduce than SnTPP. For both systems, the quenching mechanism is confirmed by suitable blank experiments, specific kinetic treatments, and the observation of kinetic isotope effects (KIEs). Differently from what has been previously proposed, a detailed reinvestigation of the triplet quenching of 1 with pyrrolidine shows that no long-lived radical pair state is formed, as diradical recombination is always faster than formation. This is true for both 1 and 3 and for all bases examined. The kinetics of the CPET pathways can be well described according to Marcus theory and point toward the involvement of substantial reorganization energy as typically observed for PCET processes of concerted nature.
Photosystem II, the natural water-oxidizing system, is a large protein complex embedded in a phospholipid membrane. A much simpler system for photocatalytic water oxidation consists of liposomes functionalized with amphiphilic ruthenium(II)-tris-bipyridine photosensitizer (PS) and 6,6′-dicarboxylato-2,2′-bipyridine-ruthenium(II) catalysts (Cat) with a water-soluble sacrificial electron acceptor (Na2S2O8). However, the effect of embedding this photocatalytic system in liposome membranes on the mechanism of photocatalytic water oxidation was not well understood. Here, several phenomena have been identified by spectroscopic tools, which explain the drastically different kinetics of water photo-oxidizing liposomes, compared with analogous homogeneous systems. First, the oxidative quenching of photoexcited PS* by S2O8 2– at the liposome surface occurs solely via static quenching, while dynamic quenching is observed for the homogeneous system. Moreover, the charge separation efficiency after the quenching reaction is much smaller than unity, in contrast to the quantitative generation of PS+ in homogeneous solution. In parallel, the high local concentration of the membrane-bound PS induces self-quenching at 10:1–40:1 molar lipid–PS ratios. Finally, while the hole transfer from PS+ to catalyst is rather fast in homogeneous solution (k obs > 1 × 104 s–1 at [catalyst] > 50 μM), in liposomes at pH = 4, the reaction is rather slow (k obs ≈ 17 s–1 for 5 μM catalyst in 100 μM DMPC lipid). Overall, the better understanding of these productive and unproductive pathways explains what limits the rate of photocatalytic water oxidation in liposomal vs homogeneous systems, which is required for future optimization of light-driven catalysis within self-assembled lipid interfaces.
A very efficient metal-mediated strategy led, in a single step, to a quantitative construction of a new three-component multichromophoric system containing one fullerene monoadduct, one aluminium(III) monopyridylporphyrin, and one ruthenium(II) tetraphenylporphyrin. The Al(III) monopyridylporphyrin component plays the pivotal role in directing the correct self-assembly process and behaves as the antenna unit for the photoinduced processes of interest. A detailed study of the photophysical behavior of the triad was carried out in different solvents (CHCl, THF, and toluene) by stationary and time-resolved emission and absorption spectroscopy in the pico- and nanosecond time domains. Following excitation of the Al-porphyrin, the strong fluorescence typical of this unit was strongly quenched. The time-resolved absorption experiments provided evidence for the occurrence of stepwise photoinduced electron and hole transfer processes, leading to a charge-separated state with reduced fullerene acceptor and oxidized ruthenium porphyrin donor. The time constant values measured in CHCl for the formation of charge-separated state Ru-Al-C (10 ps), the charge shift process (Ru-Al-C → Ru-Al-C), where a hole is transferred from Al-based to Ru-based unit (75 ps), and the charge recombination process to ground state (>5 ns), can be rationalized within the Marcus theory. Although the charge-separating performance of this triad is not outstanding, this study demonstrates that, using the self-assembling strategy, improvements can be obtained by appropriate chemical modifications of the individual molecular components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.