Purpose of review
Both restriction and supplementation of specific amino acids or branched-chain amino acids (BCAAs) are described to improve metabolic homeostasis, energy balance, and health span. This review will discuss the recent findings of the role of amino acid supplements in the regulation of mitochondrial health.
Recent findings
A mixture of essential amino acids (EAAs), BCAA enriched mixture, was found to extend healthy life span in elderly mice and prevent multiple diseases associated with an energy deficit, similarly to caloric restriction or fasting-mimicking diets. A growing body of evidence highlights mitochondria as the central target of this supplement: it promotes mitochondrial biogenesis and the activation of antioxidant defence systems in different physiological (e.g., exercise or ageing) or pathological conditions (e.g., sarcopenia, muscular dystrophy, liver steatosis, or impaired cognition). Based on these results, new formulas have been created enriched with Krebs cycle substrates, behaving more efficiently than BCAA enriched mixture.
Summary
EAA-BCAA balanced supplements might be valuable not only for healthy individuals undergoing to energy deficit (e.g., athletes) during strenuous exercise or training but also against diseases characterized by a dysregulated catabolic state or mitochondrial dysfunction, such as age-related disorders. The associated mechanistic processes should be identified as potential pharmacological targets.
protein was reduced in the hippocampi of PD-0E7 treated mice. In conclusion, we show that a dietary supplement tailored to boost mitochondrial respiration preserves skeletal muscle and hippocampal mitochondrial quality control and health. When administered at the early onset of age-related physical and cognitive decline, this novel metabolic inducer counteracts the deleterious effects of precocious aging in both domains.
The human abdominal region is very heterogeneous and stratified with subcutaneous adipose tissue (SAT) being one of the primary layers. Monitoring this tissue is crucial for diagnostic purposes and to estimate the effects of interventions like caloric restriction or bariatric surgery. However, the layered nature of the abdomen poses a major problem in monitoring the SAT in a non-invasive way by diffuse optics. In this work, we examine the possibility of using multi-distance broadband time domain diffuse optical spectroscopy to assess the human abdomen non-invasively. Broadband absorption and reduced scattering spectra from 600 to 1100 nm were acquired at 1, 2 and 3 cm source-detector distances on ten healthy adult male volunteers, and then analyzed using a homogeneous model as an initial step to understand the origin of the detected signal and how tissue should be modeled to derive quantitative information. The results exhibit a clear influence of the layered nature on the estimated optical properties. Clearly, the underlying muscle makes a relevant contribution in the spectra measured at the largest source-detector distance for thinner subjects related to blood and water absorption. More unexpectedly, also the thin superficial skin layer yields a direct contamination, leading to higher water content and steeper reduced scattering spectra at the shortest distance, as confirmed also by simulations. In conclusion, provided that data analysis properly accounts for the complex tissue structure, diffuse optics may offer great potential for the continuous non-invasive monitoring of abdominal fat.
Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.