This paper reviews the application of ionic liquids to the deconstruction and fractionation of lignocellulosic biomass, in a process step that is commonly called pretreatment. It is divided into four parts: the first gives background information on lignocellulosic biomass and ionic liquids; the second focuses on the solubility of lignocellulosic biomass (and the individual biopolymers within it) in ionic liquids; the third emphasises the deconstruction effects brought about by the use of ionic liquids as a solvent; the fourth part deals with practical considerations regarding the design of ionic liquid based deconstruction processes.
Ground lignocellulosic biomass (Miscanthus giganteus, pine (Pinus sylvestris) and willow (Salix viminalis)) was pretreated with ionic liquid-water mixtures of 1-butyl-3-methylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate. A solid fraction enriched in cellulose was recovered, which was subjected to enzymatic hydrolysis. Up to 90% of the glucose and 25% of the hemicellulose contained in the original biomass were released by the combined ionic liquid pretreatment and the enzymatic hydrolysis. After the pretreatment, the ionic liquid liquor contained the majority of the lignin and the hemicellulose. The lignin portion was partially precipitated from the liquor upon dilution with water. The amount of hemicellulose monomers in the ionic liquid liquor and their conversion into furfurals was also examined. The performance of ionic liquid-water mixtures containing 1,3-dialkylimidazolium ionic liquids with acetate, methanesulfonate, trifluoromethanesulfonate and chloride anions was investigated. The applicability of the ionic liquid 1-butylimidazolium hydrogensulfate for lignocellulose pretreatment was also examined. It was found that ionic liquid liquors containing methyl sulfate, hydrogen sulfate and methanesulfonate anions were most effective in terms of lignin/cellulose fractionation and enhancement of cellulose digestibility.
The cost of ionic liquids (IL) is one of the main impediments to IL utilization in the cellulosic biorefinery, especially in the pretreatment step. In this study, a number of ionic liquids were synthesized with the goal of optimizing solvent cost and stability whilst demonstrating promising processing potential. To achieve this, inexpensive feedstocks such as sulfuric acid and simple amines were combined into a range of protic ionic liquids containing the hydrogen sulfate [HSO 4 ] -anion. The performance of these ionic liquids was compared to a benchmark system containing the IL 1-ethyl-3-methylimidazolium acetate [C 2 C 1 im][OAc]. The highest saccharification yields were observed for the triethylammonium hydrogen sulfate IL, which was 75% as effective as the benchmark system. Techno-economic modeling revealed that this promising and yet to be optimized yield was achieved at a fraction of the processing cost. This study demonstrates that some ILs can compete with the cheapest pretreatment chemicals, such as ammonia, in terms of effectiveness and process cost, removing IL cost as a barrier to the economic viability of IL-based biorefineries.
Recently, acidic ionic liquid water mixtures based on the hydrogen sulfate anion have been shown to effectively extract lignin from lignocellulosic biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.