Communication of cells with their extracellular environment is crucial to fulfill their function in physiological and pathophysiological conditions. The literature data provide evidence that such a communication is also important in case of astrocytes. Mechanisms that contribute to the interaction between astrocytes and extracellular matrix (ECM) proteins are still poorly understood. Hyaluronan is the main component of ECM in the brain, where its major receptor protein CD44 is expressed by a subset of astrocytes. Considering the fact that functions of astrocytes are tightly coupled with changes in their morphology (e.g.: glutamate clearance in the synaptic cleft, migration, astrogliosis), we investigated the influence of hyaluronan cleavage by hyaluronidase, knockdown of CD44 by specific shRNA and CD44 overexpression on astrocyte morphology. Our results show that hyaluronidase treatment, as well as knockdown of CD44, in astrocytes result in a “stellate”-like morphology, whereas overexpression of CD44 causes an increase in cell body size and changes the shape of astrocytes into flattened cells. Moreover, as a dynamic reorganization of the actin cytoskeleton is supposed to be responsible for morphological changes of cells, and this reorganization is controlled by small GTPases of the Rho family, we hypothesized that GTPase Rac1 acts as a downstream effector for hyaluronan and CD44 in astrocytes. We used FRET-based biosensor and a dominant negative mutant of Rac1 to investigate the involvement of Rac1 activity in hyaluronidase- and CD44-dependent morphological changes of astrocytes. Both, hyaluronidase treatment and knockdown of CD44, enhances Rac1 activity while overexpression of CD44 reduces the activity state in astrocytes. Furthermore, morphological changes were blocked by specific inhibition of Rac1 activity. These findings indicate for the first time that regulation of Rac1 activity is responsible for hyaluronidase and CD44-driven morphological changes of astrocytes.
Introduction and objective. Evidence for the benefit of antioxidants' based therapeutic intervention in dementia are inconsistent. Parallel studies in disease forms of dementia different than Alzheimer's are even less conclusive. In this study, the role of serum levels of homocysteine (tHcy), lipids and antioxidants in predicting the risk of cognitive decline in Alzheimer's disease (AD) versus non-Alzheimer's dementias (n-AD). The objective was to add to the ongoing cumulative research to establish the biochemical baseline for potential nutri-therapeutic intervention in different forms of dementia. Materials and method. 65 participants with dementia (DP-s) were divided into two groups: ADP-patients with Alzheimer's disease and n-ADP-patients with dementia of a different etiology than primary neurodegenerative dementia in the course of Alzheimer's disease. Cognitive function was assessed by Mini-Mental State Examination (MMSE) and related to plasma levels of tHcy, folate, vitamins B-6, B-12, lipids and vitamins A and E for both groups. Also examined were associations between cognitive impairment and several variables (age, education, duration of dementia) that might confound nutrition-cognition associations. Results. A significant reduction in serum vitamin A levels and elevation of total cholesterol levels were shown for the DP-s group compared to those in the control group. Moreover, significant differences were found in MMSE data and serum vitamin E and tHcy levels between patients with ADP and n-ADP. The scores for MMSE showed a correlation with the vitamin E levels and duration of dementia in the ADP group and/or correlation with tHcy, levels of vitamins A and/or E, and duration of dementia in the n-ADP group. Conclusions. The results obtained suggest that elevated serum tHcy and decreased levels of vitamins A and E are associated with an increased risk of non-Alzheimer's dementias, although further studies involving a larger cohort are now needed to verify these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.