During data transmission in a hydroacoustic channel, one of the problems is the multipath propagation effect, which leads to a decrease in the transmission parameters and sometimes completely prevents it. Therefore, we have attempted to develop a method, which is based on a recorded hydroacoustic signal, that allows us to recreate the original (generated) signal by eliminating the multipath effect. In our method, we use cepstral analysis to eliminate replicas of the generated signal. The method has been tested in simulation and during measurements in a real environment. Additionally, the influence of the method on data transmission in the hydroacoustic channel was tested. The obtained results confirmed the usefulness of the application of the developed method and improved the quality of data transmission by reducing the multipath propagation effect.
Wireless data transmission in the hydroacoustic channel under non-line-of-sight (NLOS) propagation conditions, for example, during a wreck penetration, is difficult to implement reliably. This is mostly due to the multipath propagation, which causes a reduction in the quality of data reception. Therefore, in this work an attempt has been made to develop a reliable method of wireless underwater communication test it under the NLOS conditions. In our method, we used multiple frequency-shift keying (MFSK) modulation, sending a single bit on two carriers, and diversity combining. The method was tested in laboratory conditions which simulated underwater signal propagation during the penetration of the wreck. The propagation conditions were investigated by determining the impulse responses at selected measurement points using the correlation method. Additionally, for comparison, the data transmission quality was determined by the bit error rate (BER) under the same conditions using direct sequence spread spectrum (DSSS) and binary phase shift keying (BPSK) modulation. The obtained results confirmed the usefulness of the application of the developed method for wireless data transmission in a hydroacoustic channel under NLOS conditions.
Monitoring the operating parameters of power grids is extremely important for their proper functioning as well as for ensuring the security of the entire infrastructure. As the idea of the Internet of Things becomes more ubiquitous, there are tools for monitoring the state of the complex electrical grid and means to control it. There are also developed new measuring devices and transmission technologies allowing for the transfer of performed measurements from many places to the network management center. However, there are still no devices that act as data concentrators, which would integrate many transmission technologies and protocols in one device, supporting the communication between those different transmission technologies and which would realize edge computing to assist the management center by prioritizing and combining transmitted data. In this article, the authors present a device that meets the above-mentioned requirements. There are presented research results leading to the development of a decision algorithm, called Multilink—ML, dedicated to the presented device. This algorithm enables the selection between LTE and NB-IoT interfaces for packet transmission without the need to burden the communication system with additional transmissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.