The terrestrial crab Gecarcoidea natalis is endemic to the forests of Christmas Island but must migrate each year to the coast to breed. During 1993 and 1995, radio-tracking, mark and recapture, and counting methods were used to establish the routes, walking speeds, direction of travel, and destinations of migrating crabs, as well as crab numbers and distribution. The density of crabs ranged from 0.09 to 0.57 crabs per square meter, which gave a population estimate of 43.7 million adult crabs on the island. During the dry season the crabs were relatively inactive but on arrival of the wet season immediately began their migration. The crabs generally walked in straight lines, and most crabs from around the Island traveled toward the northwest shore instead of simply walking toward the nearest shore. The maximum recorded distance walked by a red crab in one day was 1460 m, but the mean was 680 m per day in 1993 and 330 m in 1995. Comparing the 1993 and 1995 study seasons, there was a 3-week difference in the timing of the start of the migration, but the spawning date was fixed by the lunar phase and took place 17 to 18 days after mating. In 1993, late rain prompted a "rushed" migration and crabs walked directly to their shore destinations; in contrast, in 1995 most crabs made stops of 1 to 7 days during the downward migration. By giving the crabs a chance to feed along the way and minimizing the time that the population was concentrated near the shore, these stops may be important in ensuring that the animals have enough food after the long dry season. Furthermore, this behavior implies that the crabs are able to judge how far away they are from the shore during the migration.
With the arrival of the monsoonal rains and after months of inactivity during the dry season, the terrestrial crab Gecarcoidea natalis embarks on its annual breeding migration to the coast. The physiological demands of the migration were assessed by determining respiratory gases in the hemolymph, key metabolites, and energy stores in G. natalis during two migratory seasons. At the end of each day of migration the pulmonary hemolymph PO2 decreased by 1-2.5 kPa, but the hemocyanin remained saturated with O2 and the venous reserve was largely unchanged (O2 > 0.4 mmol x l(-1)). The breeding migration of red crabs was accomplished without recourse to anaerobiosis, even though at times walking speeds (up to 6.2 +/- 0.5 m x min(-1)) exceeded those that promoted anaerobiosis in non-migrating crabs and in crabs exercised in the laboratory. In contrast to all previous studies, at the end of each day of migrating, red crabs experienced an alkalosis (up to 0.1 pH units) rather than any acidosis. This alkalosis was removed overnight when the crabs were inactive. Although there were seasonal fluctuations in the glycogen, glucose, and triglyceride stores, crabs engaging in the migration did not draw on these stores and must have fed along the way. In contrast, crabs returning from breeding activities on the shore terraces had significantly depleted glycogen stores. Additionally, in 1993, the male crabs returning from the breeding activities on the terraces were dehydrated and experienced a decrease in muscle tissue water of 11%. In contrast to the breeding migration per se, fighting for burrows in which breeding occurs produced severe anaerobiosis in males, especially the victors: after 135 s of combat, the maximum L-lactate concentration in the hemolymph was 35 mmol x l(-1). It appears that burrowing, courtship, and mating are more demanding than the migration itself. Furthermore, the data provide evidence that the metabolic responses of migrating individuals of G. natalis might be different from those at other times of the year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.