Radiation necrosis (RN) of brain tissue is a serious late complication of brain irradiation and recently bevacizumab has been suggested as treatment option of RN. There is a lack of data in the literature regarding the effectiveness of bevacizumab for the treatment of RN. The purpose of this review was to perform a comprehensive analysis of all reported cases using bevacizumab for the treatment of brain RN. In September 2016, we performed a comprehensive literature search of the following electronic databases: PubMed, Web of Science, Scopus and Cochrane Library. The research for the review was conducted using a combination of the keywords “radiation necrosis”, “radiotherapy” and “bevacizumab” alongside the fields comprising article title, abstract and keywords. Randomized trials, non-randomized trials, prospective studies, retrospective studies and single case reports were included in the review. Our research generated 21 studies and 125 cases where bevacizumab had been used for the treatment of RN. The median follow-up was 8 months and the most frequent bevacizumab dose used was 7.5 mg/kg for 2 weeks with a median of four cycles. Low-dose bevacizumab resulted in effectiveness with improvement in both clinical and radiographic response. The median decrease in T1 contrast enhancement and in T2/FLAIR signal abnormality was 64% and 60%, respectively. A reduction in steroidal therapy was observed in majority of patients treated. Based on the data of our review, bevacizumab appears to be a promising agent for the treatment of brain RN. Future prospective studies are required to evaluate the role of bevacizumab in RN and to define the optimal scheduling, dosage and duration of therapy.
Despite several methodological limitations, reports from the current literature seem to suggest better swallowing outcomes with IMRT compared to 3DCRT. Further improvements are likely to result from the increased use of IMRT plans optimized for SWOAR sparing.
PurposeTo investigate set-up errors, suggest the adequate planning target volume (PTV) margin and image-guided radiotherapy frequency in head and neck (H&N) cancer treated with intensity-modulated radiotherapy (IMRT) assessed by kV cone-beam computed tomography (CBCT).MethodsWe analyzed 360 CBCTs in 60 patients with H&N cancer treated with IMRT. The target delineation was contoured according to ICRU62. PTVs were generated by adding a 3–5 mm margin in all directions to the respective clinical target volumes. The kV CBCT images were obtained at first three days of irradiation and weekly thereafter. The overall mean displacement, range, systematic (∑) and random (σ) errors were calculated. Adequate PTV margins were calculated according to the van Herk formula (2.5∑ + 0.7r).ResultsThe mean of set-up errors was less than 2 mm in any direction. The overall frequency of set-up displacements greater than 3 mm was 3.9% in medial-lateral (ML) direction, 8% in superior-inferior (SI) direction, and 15.5% in anterior-posterior (AP) direction. The range of translations shifts was 0–9 mm in ML direction, 0–5 mm in SI direction and 0–10 mm in AP direction, respectively. After systematic set-up errors correction, the adequate margin to overcome the problem of set-up errors was found to be less than 3 mm.ConclusionImage-guided kV CBCT was effective for the evaluation of set-up accuracy in H&N cancer. The kV CBCT at first three fractions and followed-by weekly appears adequate for reducing significantly set-up errors in H&N cancer treated with IMRT technique. Finally, 3–5 mm PTV margins appear adequate and safe to overcome the problem of set-up errors.
Radiation therapy is one of the cornerstones in the treatment of head and neck squamous cell carcinomas (HNSCC), alone or in combination with chemotherapy or surgery. Technological advances which occurred over the last few decades have increased the efficacy of radiotherapy (RT), particularly, intensity-modulated RT (IMRT). IMRT can deliver treatments on complex tumoral targets with dose escalation while sparing organs at risk; anyway IMRT deposits dose in unpredictable patterns outside of the target volume with the purpose of improving conformality.Radiation-induced nausea and vomiting (RINV) is a frequent albeit neglected side effect of RT that can lead to delays in treatment with serious consequences on cure rates. According to several guidelines (MASCC 2016, NCCN 2018, RT for HNSCC has traditionally been regarded as a low emetic risk treatment. Nevertheless, several works suggest that IMRT could increase RINV. Further studies are needed to define the exact incidence and the detailed pathophysiology of RINV in patients with HNSCC treated with state of art IMRT techniques, with and without concurrent chemotherapy.
K E Y W O R D Shead and neck cancer, intensity modulated Radiation therapy, organ at risk, predictor factors, radiation induced nausea and vomiting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.