Two molecular forms of gastrin-releasing peptide (GRP) were isolated from an extract of the intestine of the tetraploid frog Xenopus laevis. The primary structure of GRP-1 (APTSQQHTEQ(10)LSRSNINTRG(20) SHWAVGHLM.NH(2)) differs from that of GRP-2 by a single amino acid substitution (Asn(15)--> Thr(15)). GRP-(20-29) peptide (neuromedin C) was also isolated from the extract. Synthetic GRP-1 produced concentration-dependent contractions of longitudinal smooth muscle strips from Xenopus cardiac stomach (pD(2) = 8.93 +/- 0.32; n = 6). The responses were unaffected by tetrodotoxin, atropine, and methysergide, indicating a direct action of the peptide on smooth muscle cells. GRP-1 elicited concentration-dependent relaxations of precontracted (5 microM carbachol) circular smooth muscle strips from the same region (pD(2) = 8.96 +/- 0.21; n = 8). The responses were significantly (P < 0.05) attenuated (71 +/- 24% decrease in maximum response; n = 6) by indomethacin, indicating mediation, at least in part, by prostanoids. Despite the fact that Xenopus GRP-1 differs from pig GRP at 15 amino acid sites, both peptides are equipotent and equally effective for both contractile and relaxant responses, demonstrating that selective evolutionary pressure has acted to conserve the functional COOH-terminal domain in the peptide. The data suggest a physiologically important role for GRP in the regulation of gastric motility in X. laevis.
Electrospray mass spectrometry coupled with reversephase HPLC was used to identify peptides in the molecular mass range 3000-6000 Da in extracts of the pancreata of the clawed frog Xenopus laevis (Anura: Pipidae) and the red-bellied newt Cynops pyrrhogaster (Caudata: Salamandridae). Amino acid sequences of insulins, peptides derived from the post-translational processing of proglucagons and pancreatic polypeptide were determined by automated Edman degradation. Three molecular forms of insulin were isolated from the tetraploid organism X. laevis that represent insulin-1 and insulin-2, as deduced from the nucleotide sequences of previously characterized cDNAs, and a third form which differed from insulin-2 by the single amino acid substitution Asp 21
Two tachykinin peptides, bufokinin and Xenopus neurokinin A (X-NKA) were recently isolated from Xenopus laevis. In this study we investigated the tachykinin receptors in the Xenopus gastrointestinal tract. In functional studies using stomach circular muscle strips, all peptides had similar potencies (EC50 values 1-7 nM). The rank order of potency to contract the intestine was physalaemin (EC50 1 nM)> or =bufokinin (EC50 3 nM)>substance P (SP)> or =cod SP>NKA>>X-NKA (EC50 1,900 nM). No maximum response could be obtained for [Sar9,Met(O2)11]SP, eledoisin and kassinin. In stomach strips, the mammalian tachykinin receptor antagonists RP 67580 (NK1) and MEN 10376 (NK2) had agonistic effects but did not antagonize bufokinin or X-NKA. In intestinal strips, RP 67580 (1 microM) reduced the maximal response to X-NKA but not bufokinin, while MEN 10376 was ineffective. [125I]BH-bufokinin bound with high affinity to a single class of sites, of KD 213+/-35 (stomach) and 172+/-9.3 pM (intestine). Specific binding of [125I]BH-bufokinin was displaced by bufokinin> or =SP>NKA> or =eledoisin approximately kassinin>X-NKA, indicating binding to a tachykinin NK1-like receptor. Selective tachykinin receptor antagonists were weak or ineffective. Other iodinated tachykinins ([125I]NKA and [125I]BH-eledoisin) displayed biphasic competition profiles, with the majority of sites preferring bufokinin rather than X-NKA. In conclusion, there is evidence for two different tachykinin receptors in Xenopus gastrointestinal tract. Both receptors may exist in stomach, whereas the bufokinin-preferring NK1-like receptor predominates in longitudinal muscle of the small intestine. Antagonists appear to interact differently with amphibian receptors, compared with mammalian receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.