Surface roughness of ABS material on FDM process due to different orientation angle and layer thickness are investigated using an experimental method. The aim of this paper is to determine the effect of orientation angle and layer thickness on surface roughness on 3-dimension FDM printing on ABS material. A rectangle model with 60 mm length,10 mm in width, and 10 mm in height is used in this research. The orientation angle of model is 30, 45, and 60 degrees in layer thickness of 0.15 mm and 0.25 mm. The results indicates that the different orientation angle of the layer thickness causes the roughness value of the printed surface. The roughness surface value increases along with increasing of the orientation angle. The highest surface roughness value occurs at 60 degrees orientation angle in 0.15 mm layer thickness.
Laboratorium dikenal sebagai tempat dimana proses belajar mengajar dilakukan secara praktek menggunakan alat selain proses belajar teori di dalam kelas. Selain itu, kegiatan seperti pendataan alat dan peminjaman alat juga menjadi beberapa pekerjaan tambahan yang harus dilakukan oleh petugas laboratorium. Pekerjaan yang banyak, tentunya tidak dapat dilakukan seorang diri dan dengan cara yang manual seperti menggunakan catatan dalam buku. Penggunaan sistem aplikasi komputer dirasa dapat menjadi solusi dalam menangani berbagai macam pekerjaan yang ada agar dapat berjalan dengan lebih efektif dan efisien. Penelitian ini bertujuan untuk membantu pekerjaan dari petugas laboratorium teknik mesin dan beralih dari sistem manual menjadi sistem yang terkomputerisasi. Dari analisis yang dilakukan, penggunaan aplikasi memang dibutuhkan di dalam laboratorium produksi teknik mesin, demi mengurangi resiko daripada penggunaan buku manual. Sehingga dapat disimpulkan bahwa dengan dibuatnya sistem aplikasi komputer ini dapat menjadi jawaban atas permasalahan yang terjadi di dalam laboratorium teknik mesin UNJ dalam melakukan perawatan mesin.
Characteristics of void coalescence process due to hydrogen load effects in the multiple void array are simulated using the finite element method. The goals of this paper are to characterize the effects of hydrogen on the void coalescence process within the multiple void array, and to determine the void array and void volume fraction configuration in which hydrogen has the strongest effect on the occurrence of void coalescence. We use the couple analyses between the large deformation elastic-plastic analysis in the presence of hydrogen for structural analysis and hydrogen diffusion analysis using the hydrogen enhanced localized plasticity (HELP) theory. These coupled analyses are applied to the five different models with the different void volume fraction and void array. The numerical results show that both hydrogen and the void characteristics -void array and void volume fractionaffect metallic material failure. The internal necking void coalescence occurs in the square void array while the void sheet mode of coalescence occurs in the diagonal void array. Hydrogen has the strongest effect on the occurrence of void coalescence when the void volume fraction is large and the void array is square, induces a pronounced localized plastic deformation at the ligament between voids, and is present in high concentrations in regions with high values of the equivalent plastic strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.